The upper cervical spine is a common location for metastatic tumors, which often necessitate surgical intervention to prevent neurological compromise [1]. Removal of the tumor often requires partial or complete resection of cervical vertebrae and therefore causes substantial mechanical instability in the cervical region [2]. Structural integrity is restored by fusion of the base of the skull to C5 using various spinal hardware, including cages and posterior screw-rod constructs. Due to the proximity of the spinal cord and vertebral arteries, these procedures have high associated morbidity and mortality, and the biomechanical necessity of more risky procedures, e.g., additional cages replacing the lateral masses of C2, in order to achieve sufficient rigidity has not been evaluated. Thus, the goal of this study is to determine the optimal fusion configuration following C2 corpectomy that maximized segmental rigidity while minimizing risk to the patient.

This content is only available via PDF.
You do not currently have access to this content.