Hydrogel-based tissue engineering scaffolds can allow tissues to repair and regenerate by providing a 3D environment similar to soft tissue. Type I collagen has the ability to assemble into a fibrillar gel at physiological temperature and pH, while promoting cell adhesion and growth. Our lab has modified type I collagen by covalently adding methacrylate groups to lysine residues to create collagen methacrylamide (CMA). This biomaterial, like collagen, maintains the ability to self-assemble, and can then be photocrosslinked with long-wave UV light and a water-soluble photoinitiator, which allows extensive spatiotemporal control of mechanical and biochemical properties [1]. In characterizing CMA and developing it for other applications, we discovered an interesting property. Unlike type I collagen hydrogels, which maintain a stable fibrillar network during cooling and freezing, CMA will spontaneously disassemble at temperatures less than 10°C. In this paper, we discuss the temperature-dependent rheological properties of CMA as well as the nature of its molecular and supramolecular structure in comparison to collagen.

This content is only available via PDF.
You do not currently have access to this content.