In this paper, interphases in unidirectional fiber-reinforced composites under transverse loading are modeled by an advanced boundary element method based on the elasticity theory. The interphases are regarded as elastic layers between the fiber and matrix, as opposed to the spring-like models in the boundary element method literature. Both cylinder and square unit cell models of the fiber-interphase-matrix systems are considered. The effects of varying the modulus and thickness (including nonuniform thickness) of the interphases with different fiber volume fractions are investigated. Numerical results demonstrate that the developed boundary element method is very accurate and efficient in determining interface stresses and effective elastic moduli of fiber-reinforced composites with the presence of interphases of arbitrarily small thickness. Results also show that the interphase properties have significant effect on the micromechanical behaviors of the fiber-reinforced composites when the fiber volume fractions are large. [S0021-8936(00)02501-0]

1.
Chawla, K. K., 1987, Composite Materials: Science and Engineering, Springer-Verlag, New York.
2.
Achenbach
,
J. D.
, and
Zhu
,
H.
,
1989
, “
Effect of Interfacial Zone on Mechanical Behavior and Failure of Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
,
37
, No.
3
, pp.
381
393
.
3.
Achenbach
,
J. D.
, and
Zhu
,
H.
,
1990
, “
Effect of Interphases on Micro and Macromechanical Behavior of Hexagonal-Array Fiber Composites
,”
ASME J. Appl. Mech.
,
57
, pp.
956
963
.
4.
Zhu
,
H.
, and
Achenbach
,
J. D.
,
1991
, “
Effect of Fiber-Matrix Interphase Defects on Microlevel Stress States at Neighboring Fibers
,”
J. Compos. Mater.
,
25
, pp.
224
238
.
5.
Hashin, Z., 1991, “Composite Materials With Interphase: Thermoelastic and Inelastic Effects,” Inelastic Deformation of Composite Materials, G. J. Dvorak, ed., Springer, New York, pp. 3–34.
6.
Yeh
,
J. R.
,
1992
, “
The Effect of Interface on the Transverse Properties of Composites
,”
Int. J. Solids Struct.
,
29
, pp.
2493
2505
.
7.
Jasiuk
,
I.
, and
Kouider
,
M. W.
,
1993
, “
The Effect of an Inhomogeneous Interphase on the Elastic Constants of Transversely Isotropic Composites
,”
Mech. Mater.
,
15
, pp.
53
63
.
8.
Lagache
,
M.
,
Agbossou
,
A.
,
Pastor
,
J.
, and
Muller
,
D.
,
1994
, “
Role of Interphase on the Elastic Behavior of Composite Materials: Theoretical and Experimental Analysis
,”
J. Compos. Mater.
,
28
, No.
12
, pp.
1140
1157
.
9.
Wacker
,
G.
,
Bledzki
,
A. K.
, and
Chate
,
A.
,
1998
, “
Effect of Interphase on the Transverse Young’s Modulus of Glass/Epoxy Composites
,”
Composites
,
29A
, pp.
619
626
.
10.
Aboudi
,
J.
,
1989
, “
Micromechanical Analysis of Composites by the Method of Cells
,”
Appl. Mech. Rev.
,
42
, No.
7
, pp.
193
221
.
11.
Sun
,
C. T.
, and
Vaidya
,
R. S.
,
1996
, “
Prediction of Composite Properties From a Representative Volume Element
,”
Compos. Sci. Technol.
,
56
, pp.
171
179
.
12.
Hyer, M. W., 1998, Stress Analysis of Fiber-Reinforced Composite Materials, McGraw-Hill, New York.
13.
Adams
,
D. F.
,
1987
, “
A Micromechanics Analysis of the Influence of the Interface on the Performance of Polymer-Matrix Composites
,”
J. Reinforced Plastics Compos.
,
6
, pp.
66
88
.
14.
Nassehi
,
V.
,
Dhillon
,
J.
, and
Mascia
,
L.
,
1993
, “
Finite Element Simulation of the Micromechanics of Interlayered Polymer/Fibre Composites: A Study of the Interactions Between the Reinforcing Phases
,”
Compos. Sci. Technol.
,
47
, pp.
349
358
.
15.
Mukherjee, S., 1982, Boundary Element Methods in Creep and Fracture, Applied Science Publishers, New York.
16.
Cruse, T. A., 1988, Boundary Element Analysis in Computational Fracture Mechanics, Kluwer, Dordrecht, The Netherlands.
17.
Banerjee, P. K., 1994, The Boundary Element Methods in Engineering, McGraw-Hill, New York.
18.
Cruse
,
T. A.
,
1996
, “
BIE Fracture Mechanics Analysis: 25 Years of Developments
,”
Computational Mech.
,
18
, pp.
1
11
.
19.
Oshima, N., and Watari, N., 1992, “Calculation of Effective Elastic Moduli of Composite Materials With Dispersed Parallel Fibers,” Theoretical and Applied Mechanics, M. Hori and G. Yagawa, eds., Japan National Committee for Theoretical and Applied Mechanics, Science Council of Japan, 41, pp. 181–188.
20.
Gulrajani
,
S. N.
, and
Mukherjee
,
S.
,
1993
, “
Sensitivities and Optimal Design of Hexagonal Array Fiber Composites With Respect to Interphase Properties
,”
Int. J. Solids Struct.
,
30
, No.
15
, pp.
2009
2026
.
21.
Pan
,
L.
,
Adams
,
D. O.
, and
Rizzo
,
F. J.
,
1998
, “
Boundary Element Analysis for Composite Materials and a Library of Green’s Functions
,”
Comput. Struct.
,
66
, No.
5
, pp.
685
693
.
22.
Krishnasamy
,
G.
,
Rizzo
,
F. J.
, and
Liu
,
Y. J.
,
1994
, “
Boundary Integral Equations for Thin Bodies
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
107
121
.
23.
Gray
,
L. J.
,
Martha
,
L. F.
, and
Ingraffea
,
A. R.
,
1990
, “
Hypersingular Integrals in Boundary Element Fracture Analysis
,”
Int. J. Numer. Methods Eng.
,
29
, pp.
1135
1158
.
24.
Krishnasamy, G., Rizzo, F. J., and Rudolphi, T. J., 1991, “Hypersingular Boundary Integral Equations: Their Occurrence, Interpretation, Regularization, and Computation,” Developments in Boundary Element Methods, Vol. VII, P. K. Banerjee et al., eds., Elsevier Applied Science Publishers, London, Chapter 7.
25.
Liu
,
Y. J.
, and
Rizzo
,
F. J.
,
1997
, “
Scattering of Elastic Waves From Thin Shapes in Three Dimensions Using the Composite Boundary Integral Equation Formulation
,”
J. Acoust. Soc. Am.
,
102
, No.2, Pt. 1, Aug. , pp.
926
932
.
26.
Liu
,
Y. J.
,
1998
, “
Analysis of Shell-Like Structures by the Boundary Element Method Based on 3-D Elasticity: Formulation and Verification
,”
Int. J. Numer. Methods Eng.
,
41
, pp.
541
558
.
27.
Luo
,
J. F.
,
Liu
,
Y. J.
, and
Berger
,
E. J.
,
1998
, “
Analysis of Two-Dimensional Thin Structures (From Micro-to Nano-scales) Using the Boundary Element Method
,”
Computational Mech.
,
22
, pp.
404
412
.
28.
Mukherjee, S., 1999, “On Boundary Integral Equations for Cracked and for Thin Bodies,” Math. Mech. Solids, in press.
29.
Cruse
,
T. A.
, and
Aithal
,
R.
,
1993
, “
Non-singular Boundary Integral Equation Implementation
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
237
254
.
30.
Huang
,
Q.
, and
Cruse
,
T. A.
,
1993
, “
Some Notes on Singular Integral Techniques in Boundary Element Analysis
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
2643
2659
.
31.
Liu, Y. J., Zhang, D., and Rizzo, F. J., 1993, “Nearly Singular and Hypersingular Integrals in the Boundary Element Method,” Boundary Elements XV, C. A. Brebbia and J. J. Rencis, eds., Computational Mechanics Publications, Southampton, UK, pp. 453–468.
32.
Rudolphi
,
T. J.
,
1991
, “
The Use of Simple Solutions in the Regularization of Hypersingular Boundary Integral Equations
,”
Mathl. Comput. Modelling
,
15
, pp.
269
278
.
33.
Liu
,
Y. J.
, and
Rudolphi
,
T. J.
,
1991
, “
Some Identities for Fundamental Solutions and Their Applications to Weakly-Singular Boundary Element Formulations
,”
Eng. Anal. Boundary Elem.
,
8
, No.
6
, pp.
301
311
.
34.
Chandrupatla, T. R., and Belegundu, A. D., 1997, Introduction to Finite Elements in Engineering, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ.
35.
Timoshenko, S. P., and Goodier, J. N., 1987, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.
You do not currently have access to this content.