The Mode I stress intensity factor of a sector crack in a three-dimensional Voronoi polycrystal is computed by the body force technique. Microstructural stresses arising from the elastic anisotropy of grains (cubic and hexagonal) and the random grain orientations are estimated using the Eshelby procedure and incorporated in the stress intensity factor calculations. For metallic polycrystals, it is shown that the stress intensity factor depends significantly on the elastic anisotropy ratio, the grain orientations, the remote stress state, and the microstructural stresses. [S0021-8936(00)03401-2]

1.
Clarke
,
F. J. P.
,
1964
, “
Residual Strain and the Fracture Stress-Grain Size Relationship in Brittle Solids
,”
Acta Metall.
,
12
, pp.
139
143
.
2.
Evans
,
A. G.
,
1978
, “
Microfracture from Thermal Expansion Anisotropy—I. Single Phase Systems
,”
Acta Metall.
,
26
, pp.
1845
1853
.
3.
Palumbo
,
G.
, and
Aust
,
K. R.
,
1990
, “
Structure-Dependence of Intergranular Corrosion in High Purity Nickel
,”
Acta Metall. Mater.
,
38
, pp.
2343
2352
.
4.
Yamashita
,
M.
, and
Mimaki
,
T.
,
1991
, “
Intergranular Corrosion of Copper and α-Cu-Al Alloy Bicrystals
,”
Philos. Mag. A
,
63
, pp.
695
705
.
5.
Crawford
,
D. C.
, and
Was
,
G. S.
,
1992
, “
The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni-16Cr-9Fe in 360°C Argon and High-Purity Water
,”
Metall. Trans. A
,
23
, pp.
1195
1205
.
6.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.
7.
Evans, A. G., 1984, Fracture in Ceramic Materials: Toughening Mechanisms, Machining Damage, Shock, Noyes Publications, Park Ridge, NJ.
8.
Laws
,
N.
, and
Lee
,
J. C.
,
1989
, “
Microcracking in Polycrystalline Ceramics: Elastic Isotropy and Thermal Anisotropy
,”
J. Mech. Phys. Solids
,
37
, pp.
603
618
.
9.
Tvergaard
,
V.
, and
Hutchinson
,
J.
,
1988
, “
Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy
,”
J. Am. Ceram. Soc.
,
71
, pp.
157
166
.
10.
Ortiz
,
M.
, and
Suresh
,
S.
,
1993
, “
Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials
,”
ASME J. Appl. Mech.
60
, pp.
77
84
.
11.
Wu
,
M. S.
, and
Niu
,
J.
,
1995
, “
A Theoretical Analysis of Crack Nucleation due to Grain Boundary Dislocation Pile-ups in a Random Ice Microstructure
,”
Philos. Mag. A
,
71
, pp.
831
854
.
12.
Wu
,
M. S.
, and
He
,
M. D.
,
1999
, “
Prediction of Crack Statistics in a Random Polycrystal Damaged by the Pile-ups of Extrinsic Grain-Boundary Dislocations
,”
Philos. Mag. A
,
79
, pp.
271
292
.
13.
Kozaczek
,
K. J.
,
Petrovic
,
B. G.
,
Ruud
,
C. O.
,
Kurtz
,
S. K.
, and
McIlree
,
A. R.
,
1995
, “
Microstructural Modelling of Grain-Boundary Stresses in Alloy 600
,”
J. Mater. Sci.
,
30
, pp.
2390
2400
.
14.
Kumar
,
S.
,
Kurtz
,
S. K.
, and
Agarwala
,
V. K.
,
1996
, “
Micro-stress Distribution Within Polycrystalline Aggregate
,”
Acta Mech.
,
114
, pp.
203
216
.
15.
Ghahremani
,
F.
, and
Hutchinson
,
J. W.
,
1990
, “
Three-Dimensional Effects in Microcrack Nucleation in Brittle Polycrystals
,”
J. Am. Ceram. Soc.
,
73
, pp.
1548
1554
.
16.
Kumar
,
S.
,
Kurtz
,
S. K.
,
Banavar
,
J. R.
, and
Sharma
,
M. G.
,
1992
, “
Properties of a Three-Dimensional Voronoi Tessellation: A Monte-Carlo Study
,”
J. Stat. Phys.
,
67
, pp.
523
551
.
17.
Williams
,
W. M.
, and
Smith
,
S. C.
,
1952
, “
A Study of Grain Shape in an Aluminum Alloy and other Applications of Stereoscopic Microradiography
,”
Trans. Am. Inst. Min. Metall. Eng.
,
194
, pp.
755
765
.
18.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.
19.
Isida
,
M.
,
Yoshida
,
T.
, and
Noguchi
,
H.
,
1990
, “
Tension of a Finite-Thickness Plate With a Pair of Semi-Elliptical Surface Cracks
,”
Eng. Fract. Mech.
,
35
, pp.
961
965
.
20.
Isida
,
M.
,
Tsuru
,
H.
, and
Noguchi
,
H.
,
1994
, “
An Analysis for Three Dimensional Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
, pp.
737
749
.
21.
Qu
,
J.
, and
Xue
,
Y.
,
1998
, “
Three-Dimensional Interface Cracks in Anisotropic Bimaterials: The Non-Oscillatory Case
,”
ASME J. Appl. Mech.
,
65
, pp.
1048
1055
.
You do not currently have access to this content.