The Mode I stress intensity factor of a sector crack in a three-dimensional Voronoi polycrystal is computed by the body force technique. Microstructural stresses arising from the elastic anisotropy of grains (cubic and hexagonal) and the random grain orientations are estimated using the Eshelby procedure and incorporated in the stress intensity factor calculations. For metallic polycrystals, it is shown that the stress intensity factor depends significantly on the elastic anisotropy ratio, the grain orientations, the remote stress state, and the microstructural stresses. [S0021-8936(00)03401-2]
Issue Section:
Technical Papers
1.
Clarke
, F. J. P.
, 1964
, “Residual Strain and the Fracture Stress-Grain Size Relationship in Brittle Solids
,” Acta Metall.
, 12
, pp. 139
–143
.2.
Evans
, A. G.
, 1978
, “Microfracture from Thermal Expansion Anisotropy—I. Single Phase Systems
,” Acta Metall.
, 26
, pp. 1845
–1853
.3.
Palumbo
, G.
, and Aust
, K. R.
, 1990
, “Structure-Dependence of Intergranular Corrosion in High Purity Nickel
,” Acta Metall. Mater.
, 38
, pp. 2343
–2352
.4.
Yamashita
, M.
, and Mimaki
, T.
, 1991
, “Intergranular Corrosion of Copper and α-Cu-Al Alloy Bicrystals
,” Philos. Mag. A
, 63
, pp. 695
–705
.5.
Crawford
, D. C.
, and Was
, G. S.
, 1992
, “The Role of Grain Boundary Misorientation in Intergranular Cracking of Ni-16Cr-9Fe in 360°C Argon and High-Purity Water
,” Metall. Trans. A
, 23
, pp. 1195
–1205
.6.
Eshelby
, J. D.
, 1957
, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,” Proc. R. Soc. London, Ser. A
, 241
, pp. 376
–396
.7.
Evans, A. G., 1984, Fracture in Ceramic Materials: Toughening Mechanisms, Machining Damage, Shock, Noyes Publications, Park Ridge, NJ.
8.
Laws
, N.
, and Lee
, J. C.
, 1989
, “Microcracking in Polycrystalline Ceramics: Elastic Isotropy and Thermal Anisotropy
,” J. Mech. Phys. Solids
, 37
, pp. 603
–618
.9.
Tvergaard
, V.
, and Hutchinson
, J.
, 1988
, “Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy
,” J. Am. Ceram. Soc.
, 71
, pp. 157
–166
.10.
Ortiz
, M.
, and Suresh
, S.
, 1993
, “Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials
,” ASME J. Appl. Mech.
60
, pp. 77
–84
.11.
Wu
, M. S.
, and Niu
, J.
, 1995
, “A Theoretical Analysis of Crack Nucleation due to Grain Boundary Dislocation Pile-ups in a Random Ice Microstructure
,” Philos. Mag. A
, 71
, pp. 831
–854
.12.
Wu
, M. S.
, and He
, M. D.
, 1999
, “Prediction of Crack Statistics in a Random Polycrystal Damaged by the Pile-ups of Extrinsic Grain-Boundary Dislocations
,” Philos. Mag. A
, 79
, pp. 271
–292
.13.
Kozaczek
, K. J.
, Petrovic
, B. G.
, Ruud
, C. O.
, Kurtz
, S. K.
, and McIlree
, A. R.
, 1995
, “Microstructural Modelling of Grain-Boundary Stresses in Alloy 600
,” J. Mater. Sci.
, 30
, pp. 2390
–2400
.14.
Kumar
, S.
, Kurtz
, S. K.
, and Agarwala
, V. K.
, 1996
, “Micro-stress Distribution Within Polycrystalline Aggregate
,” Acta Mech.
, 114
, pp. 203
–216
.15.
Ghahremani
, F.
, and Hutchinson
, J. W.
, 1990
, “Three-Dimensional Effects in Microcrack Nucleation in Brittle Polycrystals
,” J. Am. Ceram. Soc.
, 73
, pp. 1548
–1554
.16.
Kumar
, S.
, Kurtz
, S. K.
, Banavar
, J. R.
, and Sharma
, M. G.
, 1992
, “Properties of a Three-Dimensional Voronoi Tessellation: A Monte-Carlo Study
,” J. Stat. Phys.
, 67
, pp. 523
–551
.17.
Williams
, W. M.
, and Smith
, S. C.
, 1952
, “A Study of Grain Shape in an Aluminum Alloy and other Applications of Stereoscopic Microradiography
,” Trans. Am. Inst. Min. Metall. Eng.
, 194
, pp. 755
–765
.18.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.
19.
Isida
, M.
, Yoshida
, T.
, and Noguchi
, H.
, 1990
, “Tension of a Finite-Thickness Plate With a Pair of Semi-Elliptical Surface Cracks
,” Eng. Fract. Mech.
, 35
, pp. 961
–965
.20.
Isida
, M.
, Tsuru
, H.
, and Noguchi
, H.
, 1994
, “An Analysis for Three Dimensional Cracks
,” Fatigue Fract. Eng. Mater. Struct.
, 17
, pp. 737
–749
.21.
Qu
, J.
, and Xue
, Y.
, 1998
, “Three-Dimensional Interface Cracks in Anisotropic Bimaterials: The Non-Oscillatory Case
,” ASME J. Appl. Mech.
, 65
, pp. 1048
–1055
. Copyright © 2000
by ASME
You do not currently have access to this content.