The qualitative difference in solution behavior in the vicinity of maximum friction surfaces is demonstrated for two distinct models of pressure-dependent plasticity (the double-shearing and coaxial models) using closed-form solutions for planar flow through an infinite wedge-shaped channel and plane-strain compression of an infinite block between parallel plates. Singular velocity fields (some components of the strain rate tensor approach infinity at the friction surface) occur in the solutions based on the double-shearing model. This is similar to behavior in the vicinity of maximum friction surfaces in classical plasticity of pressure-independent materials. A singular velocity field is also obtained in the solution based on the coaxial model for the problem of channel flow; but, in contrast to the double-shearing model and classical plasticity, sticking must occur at this friction surface. For the problem of compression of a material obeying the coaxial model, no solution based on conventional assumptions exists with the maximum friction law. This is quite different from both the corresponding solution based on the double-shearing model and the channel flow solution based on the coaxial model.

1.
Ostrowska-Maciejewska
,
J.
, and
Harris
,
D.
,
1990
, “
Three-Dimensional Constitutive Equations for Rigid/Perfectly Plastic Granular Materials
,”
Math. Proc. Cambridge Philos. Soc.
,
108
, pp.
153
169
.
2.
Spencer, A. J. M., 1982, “Deformation of Ideal Granular Materials,” Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, H. G. Hopkins and M. J. Sewell, eds., Pergamon Press, Oxford, UK, pp. 607–652.
3.
Spencer, A. J. M., 1983, “Kinematically Determined Axially Symmetric Deformations of Granular Materials,” Mechanics of Granular Materials: New Models and Constitutive Relations, J. T. Jenkins and M. Satake, eds., Elsevier, Amsterdam, pp. 245–253.
4.
Hill
,
J. M.
, and
Wu
,
Y.-H.
,
1993
, “
Plastic Flows of Granular Materials of Shear Index n—I. Yield Functions
,”
J. Mech. Phys. Solids
,
41
, pp.
77
93
.
5.
Hill
,
J. M.
, and
Wu
,
Y.-H.
,
1993
, “
Plastic Flows of Granular Materials of Shear Index n—II. Plane and Axially Symmetric Problems for n=2,
J. Mech. Phys. Solids
,
41
, pp.
95
115
.
6.
Harris
,
D.
,
1993
, “
Constitutive Equations for Planar Deformations of Rigid-Plastic Materials
,”
J. Mech. Phys. Solids
,
41
, pp.
1515
1531
.
7.
Lubarda
,
V. A.
,
1996
, “
Some Comments on Plasticity Postulates and Non-Associative Flow Rules
,”
Int. J. Mech. Sci.
,
38
, pp.
247
258
.
8.
Yoshida
,
S.
,
Oguchi
,
A.
, and
Nobuki
,
M.
,
1971
, “
Influence of High Hydrostatic Pressure on the Flow Stress of Copper Polycrystals
,”
Trans. Jpn. Inst. Met.
,
12
, pp.
238
242
.
9.
Spitzig
,
W. A.
,
Sober
,
R. J.
, and
Richmond
,
O.
,
1976
, “
The Effect of Hydrostatic Pressure on the Deformation Behavior of Maraging and HY-80 Steels and Its Implications for Plasticity Theory
,”
Metall. Trans. A
,
7A
, pp.
1703
1710
.
10.
Spitzig
,
W. A.
,
1979
, “
Effect of Hydrostatic Pressure on Plastic-Flow Properties of Iron Single Crystals
,”
Acta Metall.
,
27
, pp.
523
534
.
11.
Kao
,
A. S.
,
Kuhn
,
H. A.
,
Spitzig
,
W. A.
, and
Richmond
,
O.
,
1990
, “
Influence of Superimposed Hydrostatic Pressure on Bending Fracture and Formability of a Low Carbon Steel Containing Globular Sulfides
,”
ASME J. Eng. Mater. Technol.
,
112
, pp.
26
30
.
12.
Schey, J. A., 1984, Tribology in Metalforming, ASM International, Materials Park, OH.
13.
Alexandrov
,
S.
, and
Richmond
,
O.
,
2001
, “
Singular Plastic Flow Fields Near Surfaces of Maximum Friction Stress
,”
Int. J. Non-Linear Mech.
,
36
, pp.
1
11
.
14.
Alexandrov
,
S.
, and
Richmond
,
O.
,
1998
, “
Asymptotic Behavior of the Velocity Field in the Case of Axially Symmetric Flow of a Material Obeying the Tresca Condition
,”
Dokl. Phys.
,
43
(
6
), pp.
362
364
(translated from Russian).
15.
Alexandrov, S., and Richmond, O., 1999, “Estimation of Thermomechanical Fields Near Maximum Shear Stress Tool/Workpiece in Metalforming Processes,” Proc of 3rd Int. Cong. on Thermal Stress, J. J. Skrzypek and R. B. Hetnarski, eds., Cracow University of Technology, Cracow, pp. 153–156.
16.
Pemberton
,
C. S.
,
1965
, “
Flow of Imponderable Granular Materials in Wedge-Shaped Channels
,”
J. Mech. Phys. Solids
,
13
, pp.
351
360
.
17.
Marshall
,
E. A.
,
1967
, “
The Compression of a Slab of Ideal Soil Between Rough Plates
,”
Acta Mech.
,
3
, pp.
82
92
.
18.
Alexandrov
,
S.
, and
Richmond
,
O.
,
2001
, “
Couette Flows of Rigid/Plastic Solids: Analytical Examples of the Interaction of Constitutive and Frictional Laws
,”
Int. J. Mech. Sci.
,
43
, pp.
653
665
.
19.
Alexandrov
,
S.
,
Mishuris
,
G.
, and
Miszuris
,
W.
,
2000
, “
Planar Flow of a Three-Layer Plastic Material Through a Converging Wedge-Shaped Channel: Part 1—Analytical Solution
,”
Eur. J. Mech. A/Solids
,
19
, pp.
811
825
.
20.
Alexandrov
,
S.
, and
Alexandrova
,
N.
,
2000
, “
On the Maximum Friction Law in Viscoplasticity
,”
Mech. Time-Depend. Mater.
,
4
, pp.
99
104
.
21.
Alexandrov
,
S.
, and
Alexandrova
,
N.
,
2000
, “
On the Maximum Friction Law for Rigid/Plastic, Hardening Materials
,”
Meccanica
,
35
, pp.
393
398
.
22.
Rebelo
,
N.
, and
Kobayashi
,
S.
,
1980
, “
A Coupled Analysis of Viscoplastic Deformation and Heat Transfer—II
,”
Int. J. Mech. Sci.
22
, pp.
707
718
.
23.
Appleby
,
E. J.
,
Lu
,
C. Y.
,
Rao
,
R. S.
,
Devenpeck
,
M. L.
,
Wright
,
P. K.
, and
Richmond
,
O.
,
1984
, “
Strip Drawing: A Theoretical-Experimental Comparison
,”
Int. J. Mech. Sci.
,
26
, pp.
351
362
.
24.
Alexandrov
,
S. E.
, and
Druyanov
,
B. A.
,
1992
, “
Friction Conditions for Plastic Bodies
,”
Mech. Solids
,
27
(
4
), pp.
110
115
(translated from Russian).
25.
Craggs
,
J. W.
,
1954
, “
Characteristic Surfaces in Ideal plasticity in Three Dimensions
,”
Q. J. Mech. Appl. Math.
,
7
,
Pt. 1
, pp.
35
39
.
26.
Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK.
27.
Durban
,
D.
, and
Budiansky
,
B.
,
1979
, “
Plane-Strain Radial Flow of Plastic Materials
,”
J. Mech. Phys. Solids
,
26
, pp.
303
324
.
28.
Alexandrov
,
S.
, and
Goldstein
,
R.
,
1993
, “
Flow of a Plastic Substance Through a Convergent Channel: Characteristics of the Solution
,”
Sov. Phys. Dokl.
,
38
(
9
), pp.
370
372
(translated from Russian).
29.
Collins
,
I. F.
, and
Meguid
,
S. A.
,
1977
, “
On the Influence of Hardening and Anisotropy on the Plane-Strain Compression of Thin Metal Strip
,”
ASME J. Appl. Mech.
,
44
, pp.
271
278
.
30.
Adams
,
M. J.
,
Briscoe
,
B. J.
,
Corfield
,
G. M.
,
Lawrence
,
C. J.
, and
Papathanasiou
,
T. D.
,
1997
, “
An Analysis of the Plane-Strain Compression of Viscoplastic Materials
,”
ASME J. Appl. Mech.
,
64
, pp.
420
424
.
31.
Nepershin
,
R. I.
,
1997
, “
Non-Isothermal Plane Plastic Flow of a Thin Layer Compressed by Flat Rigid Dies
,”
Int. J. Mech. Sci.
,
39
, pp.
899
912
.
You do not currently have access to this content.