Abstract
A spatially varying cohesive failure model is used to simulate quasi-static fracture in functionally graded polymers. A key aspect of this paper is that all mechanical properties and cohesive parameters entering the analysis are derived experimentally from full-scale fracture tests allowing for a fit of only the shape of the cohesive law to experimental data. The paper also summarizes the semi-implicit implementation of the cohesive model into a cohesive-volumetric finite element framework used to predict the quasi-static crack initiation and subsequent propagation in the presence of material gradients.
Issue Section:
Technical
Papers
1.
Kawasaki
, A.
, and Watanabe
, R.
, 1987, “Finite Element Analysis of Thermal Stress of the Metal/Ceramic Multi-Layer Composites With Compositional Gradients
,” J. Jpn. Inst. Met.
0021-4876, 51
, pp. 525
–529
.2.
Uemura
, S.
, 2003, “The Activities of FGM on New Application
,” Mater. Sci. Forum
0255-5476, 423–425
, pp. 1
–10
.3.
Erdogan
, F.
, and Wu
, B. H.
, 1997, “The Surface Crack Problem for a Plate With Functionally Graded Properties
,” ASME J. Appl. Mech.
0021-8936, 64
, pp. 449
–456
.4.
Jin
, Z. H.
, and Batra
, R. C.
, 1996, “Some Basic Fracture Mechanics Concepts in Functionally Graded Materials
,” J. Mech. Phys. Solids
0022-5096, 44
, pp. 1221
–1235
.5.
Jin
, Z. H.
, and Noda
, N.
, 1994, “Crack-Tip Singular Fields in Nonhomogeneous Materials
,” ASME J. Appl. Mech.
0021-8936, 61
, pp. 738
–740
.6.
Delale
, F.
, and Erdogan
, F.
, 1983, “The Crack Problem for a Nonhomogeneous Plane
,” ASME J. Appl. Mech.
0021-8936, 50
, pp. 609
–614
.7.
Wang
, B. L.
, Mai
, Y.-W.
, and Noda
, N.
, 2002, “Fracture Mechanics Analysis Model for Functionally Graded Materials With Arbitrarily Distributed Properties
,” Int. J. Fract.
0376-9429, 116
, pp. 161
–177
.8.
Butcher
, R. J.
, Rousseau
, C. E.
, and Tippur
, H. V.
, 1999, “A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis
,” Acta Mater.
1359-6454, 47
, pp. 259
–268
.9.
Chalivendra
, V. B.
, Shukla
, A.
, Bose
, A.
, and Parameswaran
, V.
, 2003, “Processing and Mechanical Characterization of Lightweight Polyurethane Composites
,” J. Mater. Sci.
0022-2461, 38
, pp. 1631
–1643
.10.
Parameswaran
, V.
, and Shukla
, A.
, 1998, “Dynamic Fracture of a Functionally Gradient Material Having Discrete Property Variation
,” J. Mater. Sci.
0022-2461, 33
, pp. 3303
–3311
.11.
Lambros
, J.
, Santare
, M. H.
, Li
, H.
, and Sapna
III, G.
, 1999, “A Novel Technique for the Fabrication of Laboratory Scale Functionally Graded Materials
,” Exp. Mech.
0014-4851, 39
, pp. 183
–189
.12.
Li
, H.
, Lambros
, J.
, Cheeseman
, B. A.
, and Santare
, M. H.
, 2000, “Experimental Investigation of the Quasi-Static Fracture of Functionally Graded Materials
,” Int. J. Solids Struct.
0020-7683, 37
, pp. 3715
–3732
.13.
Abanto-Bueno
, J.
, and Lambros
, J.
, (2005), “Parameters Controlling Fracture Resistance Curves in Functionally Graded Materials Under Mode I Loading
,” International Journal of Solids and Structures
(in press).14.
Camacho
, G. T.
, and Ortiz
, M.
, 1996, “Computational Modelling of Impact Damage in Brittle Materials
,” Int. J. Solids Struct.
0020-7683, 33
, pp. 2899
–2938
.15.
Xu
, X. P.
, and Needleman
, A.
, 1996, “Numerical Simulations of Dynamic Crack Growth Along an Interface
,” Int. J. Fract.
0376-9429, 74
, pp. 289
–324
.16.
Geubelle
, P. H.
, and Baylor
, J. S.
, 1998, “Impact-Induced Delamination of Composites: A 2D Simulation
,” Composites, Part B
1359-8368, 29B
, pp. 589
–602
.17.
Roy
, Y. A.
, and Dodds
, R. H.
, 2001, “Simulation of Ductile Crack Growth in Thin Aluminum Panels Using 3-D Surface Cohesive Elements
,” Int. J. Fract.
0376-9429, 110
, pp. 21
–45
.18.
Jin
, Z.-H.
, Paulino
, G. H.
, and Dodds
, R. H.
, 2002, “Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model
,” ASME J. Appl. Mech.
0021-8936, 69
, pp. 370
–379
.19.
Tvergaard
, V.
, 2002, “Theoretical Investigation of the Effect of Plasticity on Crack Growth Along a Functionally Graded Region Between Dissimilar Elastic-Plastic Solids
,” Eng. Fract. Mech.
0013-7944, 69
, pp. 1635
–1645
.20.
Williams
, J. G.
, and Hadavinia
, H.
, 2002, “Analytical Solutions for Cohesive Zone Models
,” J. Mech. Phys. Solids
0022-5096, 50
, pp. 809
–825
.21.
Kandula
, S. S. V.
, Abanto-Bueno
, J.
, Geubelle
, P. H.
, and Lambros
, J.
, 2005, “Cohesive Modeling of Dynamic Fracture in Functionally Graded Materials
,” Int. J. Fract.
0376-9429, 132
, pp. 275
–296
.22.
Bi
, X.
, Li
, Z.
, Geubelle
, P. H.
, and Lambros
, J.
, 2002, “Dynamic Fiber Debonding and Frictional Push-Out in Model Composite Systems: Numerical Simulations
,” Mech. Mater.
0167-6636, 34
, pp. 433
–446
.23.
Pandya
, K. C.
, and Williams
, J. G.
, 2000, “Cohesive Modeling of Crack Growth in Polymers: Part 1—Experimental Measurement of the Cohesive Law
,” Plast. Rubber Compos.
1465-8011, 29
, pp. 439
–446
.24.
Pandya
, K. C.
, and Williams
, J. G.
, 2000, “Measurement of Cohesive Zone Parameters in Tough Polyethylene
,” Polym. Eng. Sci.
0032-3888, 40
, pp. 1765
–1776
.25.
Ivankovic
, A.
, Pandya
, K. C.
, and Williams
, J. G.
, 2004, “Crack Growth Predictions in Polyethylene Using Measured Traction Separation Curves
,” Eng. Fract. Mech.
0013-7944, 71
, pp. 657
–668
.26.
Jin
, Z.-H.
, Paulino
, G. H.
, and Dodds
, R. H.
, 2003, “Cohesive Fracture Modeling of Elastic Plastic Crack Growth in Functionally Graded Materials
,” Eng. Fract. Mech.
0013-7944, 70
, pp. 269
–283
.27.
Jin
, Z. H.
, and Dodds
, R. H.
, 2004, “Crack Growth Resistance Behavior of a Functionally Graded Material: Computational Studies
,” Eng. Fract. Mech.
0013-7944, 71
, pp. 1651
–1672
.28.
Wang
, Z.
, and Nakamura
, T.
, 2004, “Simulations of Crack Propagation in Elastic-Plastic Graded Materials
,” Mech. Mater.
0167-6636, 36
, pp. 601
–622
.29.
Sutton
, M.
, Wolters
, W.
, Peters
, W.
, Ranson
, W.
, and McNeill
, S.
, 1988, “Determination of Displacements Using an Improved Digital Image Correlation Method
,” Image Vis. Comput.
0262-8856, 1
, pp. 133
–139
.30.
Bruck
, H.
, McNeill
, S.
, Sutton
, M.
, and Peters
III, W.
, 1989, “Digital Image Correlation Using Newton-Raphson Method of Partial-Differential Correction
,” Exp. Mech.
0014-4851, 29
, pp. 261
–267
.31.
Eischen
, J. W.
, 1987, “Fracture of Nonhomogeneous Materials
,” Int. J. Fract.
0376-9429, 34
, pp. 3
–22
.32.
Erdogan
, F.
, 1995, “Fracture Mechanics of Functionally Graded Materials
,” Composites Eng.
0961-9526, 5
, pp. 753
–770
.33.
Dugdale
, D. S.
, 1960, “Yielding of Steel Sheets Containing Slits
,” J. Mech. Phys. Solids
0022-5096, 8
, pp. 100
–104
.34.
Barenblatt
, G. I.
, 1962, “The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture
,” Adv. Appl. Mech.
0065-2156, 7
, pp. 55
–129
.35.
Maiti
, S.
, and Geubelle
, P. H.
, 2005, “A Cohesive Model for Fatigue Failure of Polymers
,” Eng. Fract. Mech.
0013-7944, 72
, pp. 691
–708
.36.
Domininghaus
, H.
, 1993, Plastics for Engineers: Materials, Properties and Applications
, Hanser Publishers
, Munich
.Copyright © 2006
by American
Society of Mechanical Engineers
You do not currently have access to this content.