Abstract

A spatially varying cohesive failure model is used to simulate quasi-static fracture in functionally graded polymers. A key aspect of this paper is that all mechanical properties and cohesive parameters entering the analysis are derived experimentally from full-scale fracture tests allowing for a fit of only the shape of the cohesive law to experimental data. The paper also summarizes the semi-implicit implementation of the cohesive model into a cohesive-volumetric finite element framework used to predict the quasi-static crack initiation and subsequent propagation in the presence of material gradients.

1.
Kawasaki
,
A.
, and
Watanabe
,
R.
, 1987, “
Finite Element Analysis of Thermal Stress of the Metal/Ceramic Multi-Layer Composites With Compositional Gradients
,”
J. Jpn. Inst. Met.
0021-4876,
51
, pp.
525
529
.
2.
Uemura
,
S.
, 2003, “
The Activities of FGM on New Application
,”
Mater. Sci. Forum
0255-5476,
423–425
, pp.
1
10
.
3.
Erdogan
,
F.
, and
Wu
,
B. H.
, 1997, “
The Surface Crack Problem for a Plate With Functionally Graded Properties
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
449
456
.
4.
Jin
,
Z. H.
, and
Batra
,
R. C.
, 1996, “
Some Basic Fracture Mechanics Concepts in Functionally Graded Materials
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
1221
1235
.
5.
Jin
,
Z. H.
, and
Noda
,
N.
, 1994, “
Crack-Tip Singular Fields in Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
738
740
.
6.
Delale
,
F.
, and
Erdogan
,
F.
, 1983, “
The Crack Problem for a Nonhomogeneous Plane
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
609
614
.
7.
Wang
,
B. L.
,
Mai
,
Y.-W.
, and
Noda
,
N.
, 2002, “
Fracture Mechanics Analysis Model for Functionally Graded Materials With Arbitrarily Distributed Properties
,”
Int. J. Fract.
0376-9429,
116
, pp.
161
177
.
8.
Butcher
,
R. J.
,
Rousseau
,
C. E.
, and
Tippur
,
H. V.
, 1999, “
A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis
,”
Acta Mater.
1359-6454,
47
, pp.
259
268
.
9.
Chalivendra
,
V. B.
,
Shukla
,
A.
,
Bose
,
A.
, and
Parameswaran
,
V.
, 2003, “
Processing and Mechanical Characterization of Lightweight Polyurethane Composites
,”
J. Mater. Sci.
0022-2461,
38
, pp.
1631
1643
.
10.
Parameswaran
,
V.
, and
Shukla
,
A.
, 1998, “
Dynamic Fracture of a Functionally Gradient Material Having Discrete Property Variation
,”
J. Mater. Sci.
0022-2461,
33
, pp.
3303
3311
.
11.
Lambros
,
J.
,
Santare
,
M. H.
,
Li
,
H.
, and
Sapna
III,
G.
, 1999, “
A Novel Technique for the Fabrication of Laboratory Scale Functionally Graded Materials
,”
Exp. Mech.
0014-4851,
39
, pp.
183
189
.
12.
Li
,
H.
,
Lambros
,
J.
,
Cheeseman
,
B. A.
, and
Santare
,
M. H.
, 2000, “
Experimental Investigation of the Quasi-Static Fracture of Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
3715
3732
.
13.
Abanto-Bueno
,
J.
, and
Lambros
,
J.
, (2005), “
Parameters Controlling Fracture Resistance Curves in Functionally Graded Materials Under Mode I Loading
,”
International Journal of Solids and Structures
(in press).
14.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2899
2938
.
15.
Xu
,
X. P.
, and
Needleman
,
A.
, 1996, “
Numerical Simulations of Dynamic Crack Growth Along an Interface
,”
Int. J. Fract.
0376-9429,
74
, pp.
289
324
.
16.
Geubelle
,
P. H.
, and
Baylor
,
J. S.
, 1998, “
Impact-Induced Delamination of Composites: A 2D Simulation
,”
Composites, Part B
1359-8368,
29B
, pp.
589
602
.
17.
Roy
,
Y. A.
, and
Dodds
,
R. H.
, 2001, “
Simulation of Ductile Crack Growth in Thin Aluminum Panels Using 3-D Surface Cohesive Elements
,”
Int. J. Fract.
0376-9429,
110
, pp.
21
45
.
18.
Jin
,
Z.-H.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, 2002, “
Finite Element Investigation of Quasi-Static Crack Growth in Functionally Graded Materials Using a Novel Cohesive Zone Fracture Model
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
370
379
.
19.
Tvergaard
,
V.
, 2002, “
Theoretical Investigation of the Effect of Plasticity on Crack Growth Along a Functionally Graded Region Between Dissimilar Elastic-Plastic Solids
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1635
1645
.
20.
Williams
,
J. G.
, and
Hadavinia
,
H.
, 2002, “
Analytical Solutions for Cohesive Zone Models
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
809
825
.
21.
Kandula
,
S. S. V.
,
Abanto-Bueno
,
J.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
, 2005, “
Cohesive Modeling of Dynamic Fracture in Functionally Graded Materials
,”
Int. J. Fract.
0376-9429,
132
, pp.
275
296
.
22.
Bi
,
X.
,
Li
,
Z.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
, 2002, “
Dynamic Fiber Debonding and Frictional Push-Out in Model Composite Systems: Numerical Simulations
,”
Mech. Mater.
0167-6636,
34
, pp.
433
446
.
23.
Pandya
,
K. C.
, and
Williams
,
J. G.
, 2000, “
Cohesive Modeling of Crack Growth in Polymers: Part 1—Experimental Measurement of the Cohesive Law
,”
Plast. Rubber Compos.
1465-8011,
29
, pp.
439
446
.
24.
Pandya
,
K. C.
, and
Williams
,
J. G.
, 2000, “
Measurement of Cohesive Zone Parameters in Tough Polyethylene
,”
Polym. Eng. Sci.
0032-3888,
40
, pp.
1765
1776
.
25.
Ivankovic
,
A.
,
Pandya
,
K. C.
, and
Williams
,
J. G.
, 2004, “
Crack Growth Predictions in Polyethylene Using Measured Traction Separation Curves
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
657
668
.
26.
Jin
,
Z.-H.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, 2003, “
Cohesive Fracture Modeling of Elastic Plastic Crack Growth in Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
269
283
.
27.
Jin
,
Z. H.
, and
Dodds
,
R. H.
, 2004, “
Crack Growth Resistance Behavior of a Functionally Graded Material: Computational Studies
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1651
1672
.
28.
Wang
,
Z.
, and
Nakamura
,
T.
, 2004, “
Simulations of Crack Propagation in Elastic-Plastic Graded Materials
,”
Mech. Mater.
0167-6636,
36
, pp.
601
622
.
29.
Sutton
,
M.
,
Wolters
,
W.
,
Peters
,
W.
,
Ranson
,
W.
, and
McNeill
,
S.
, 1988, “
Determination of Displacements Using an Improved Digital Image Correlation Method
,”
Image Vis. Comput.
0262-8856,
1
, pp.
133
139
.
30.
Bruck
,
H.
,
McNeill
,
S.
,
Sutton
,
M.
, and
Peters
III,
W.
, 1989, “
Digital Image Correlation Using Newton-Raphson Method of Partial-Differential Correction
,”
Exp. Mech.
0014-4851,
29
, pp.
261
267
.
31.
Eischen
,
J. W.
, 1987, “
Fracture of Nonhomogeneous Materials
,”
Int. J. Fract.
0376-9429,
34
, pp.
3
22
.
32.
Erdogan
,
F.
, 1995, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
0961-9526,
5
, pp.
753
770
.
33.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
34.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
35.
Maiti
,
S.
, and
Geubelle
,
P. H.
, 2005, “
A Cohesive Model for Fatigue Failure of Polymers
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
691
708
.
36.
Domininghaus
,
H.
, 1993,
Plastics for Engineers: Materials, Properties and Applications
,
Hanser Publishers
,
Munich
.
You do not currently have access to this content.