Abstract

The Principle of Maximum Dissipation Rate (PMD) can be exploited to derive homogeneous kinetic rate laws for the internal variables. A “normality structure” expressing the rates of the internal variables as normal to convex functions (entropy production rate, dissipation function as flow potentials) in the space of the conjugate thermodynamic forces is a direct consequence of the PMD. This paper can be considered as a note to Yang et al., 2005, ASME J. Appl. Mech., 72, pp. 322–329.

References

1.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes I.
,”
Phys. Rev.
0031-899X,
37
, pp.
405
426
.
2.
Ziegler
,
H.
, 1961, “
Zwei Extremalprinzipien der irreversiblen Thermodynamik
,”
Ing.-Arch.
0020-1154,
30
, pp.
410
416
.
3.
Ziegler
,
H.
, 1963,
Some Extremum Principles in Irreversible Thermodynamics With Application to Continuum Mechanics
,
I. N.
Sneddon
and
R.
Hill
, eds.,
North-Holland
,
Amsterdam
, Vol.
4
, Chap. II, pp.
91
193
.
4.
Ziegler
,
H.
, 1977,
An Introduction to Thermomechanics
,
North-Holland
,
Amsterdam
.
5.
Ziegler
,
H.
, and
Wehrli
,
C.
, 1987, “
On a Principle of Maximal Rate of Entropy Production
,”
J. Non-Equil. Thermodyn.
0304-0204,
12
, pp.
229
243
.
6.
Svoboda
,
J.
,
Turek
,
I.
, and
Sklenička
,
V.
, 1990, “
Unified Thermodynamic Treatment of Cavity Nucleation and Growth in High Temperature Creep
,”
Acta Metall. Mater.
0956-7151,
38
, pp.
573
580
.
7.
Svoboda
,
J.
, and
Turek
,
I.
, 1991, “
On Diffusion-Controlled Evolution of Closed Solid State Thermodynamic Systems at Constant Temperature and Pressure
,”
Philos. Mag. B
1364-2812,
64
, pp.
749
759
.
8.
Cocks
,
A. C. F.
,
Gill
,
S. P. A.
, and
Pan
,
J. Z.
, 1999, “
Modelling Microstructure Evolution in Engineering Materials
,”
Advances in Applied Mechanics
,
E. v. d.
Giessen
and
Th. Y.
Wu
, eds.,
Academic
,
San Diego
, Vol.
36
, pp.
81
162
.
9.
Gill
,
S. P. A.
,
Cornforth
,
M. G.
, and
Cocks
,
A. C. F.
, 2001, “
Modelling Microstructure Evolution in Engineering Materials
,”
Int. J. Plast.
0749-6419,
17
, pp.
669
690
.
10.
Svoboda
,
J.
, and
Lukáš
,
P.
, 2000, “
Creep Deformation Modelling of Superalloy Single Crystals
,”
Acta Mater.
1359-6454,
48
, pp.
2519
2528
.
11.
Svoboda
,
J.
,
Fischer
,
F. D.
,
Fratzl
,
P.
, and
Kroupa
,
A.
, 2002, “
Diffusion in Multi-Component Systems With No or Dense Sources and Sinks for Vacancies
,”
Acta Mater.
1359-6454,
50
, pp.
1369
1381
.
12.
Fischer
,
F. D.
,
Svoboda
,
J.
, and
Fratzl
,
P.
, 2003, “
A Thermodynamical Approach to Grain Growth and Coarsening
,”
Philos. Mag.
1478-6435,
83
, pp.
1075
1093
.
13.
Svoboda
,
J.
,
Gamsjäger
,
E.
,
Fischer
,
F. D.
, and
Fratzl
,
P.
, 2004, “
Application of the Thermodynamic Extremal Principle to the Diffusional Phase Transformations
,”
Acta Mater.
1359-6454,
52
, pp.
959
967
.
14.
Svoboda
,
J.
,
Fischer
,
F. D.
,
Fratzl
,
P.
, and
Kozeschnik
,
E.
, 2004, “
Modelling of Kinetics in Multi-Component Multi-Phase Multi-Particle Systems I.—Theory
,”
Mater. Sci. Eng., A
0921-5093,
385
, pp.
166
174
.
15.
Kozeschnik
,
E.
,
Svoboda
,
J.
,
Fratzl
,
P.
, and
Fischer
,
F. D.
, 2004, “
Modelling of Kinetics in Multi-Component Multi-Phase Multi-Particle Systems II.—Numerical Solution and Application
,”
Mater. Sci. Eng., A
0921-5093,
385
, pp.
157
165
.
16.
Yang
,
Q.
,
Tham
,
L. G.
, and
Swoboda
,
G.
, 2005, “
Normality Structures with Homogeneous Kinetic Rate Laws
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
322
329
.
17.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
Relationship Between Normality Structure and Orthogonality Condition
,”
Mech. Res. Commun.
0093-6413,
32
, pp.
582
589
.
18.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
Microscopic Thermodynamic Basis of Normality Structure of Inelastic Constitutive Relations
,”
Mech. Res. Commun.
0093-6413,
32
, pp.
590
596
.
19.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
,
W. Y.
, 2005, “
On Microscopic Thermodynamic Mechanisms of Damage Evolution Laws
,”
Int. J. Damage Mech.
1056-7895,
14
, pp.
261
293
.
20.
Rice
,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Integral Variable Theory and its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
433
455
.
21.
Rice
,
J. R.
, 1975, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT Press
,
Cambridge, MA
, pp.
23
79
.
22.
Müller
,
I.
, and
Ruggeri
,
T.
, 1993,
Extended Thermodynamics
,
Springer-Verlag
,
New York
.
23.
Fried
,
E.
, and
Gurtin
,
M. E.
, 2004, “
A Unified Treatment of Evolving Interfaces Accordings for Small Deformations and Atomic Transport With Emphasis on Grain-Boundaries and Epitaxy
,”
Advances in Applied Mechanics
,
H.
Aref
,
E. v. d.
Giessen
, eds.,
Elsevier
,
Amsterdam
, Vol.
40
, pp.
1
177
.
24.
Fischer
,
F. D.
, and
Simha
,
N. K.
, 2004, “
Influence of Material Flux on the Jump Relations at a Singular Interface in a Multicomponent Solid
,”
Acta Mech.
0001-5970,
171
, pp.
213
223
.
25.
Svoboda
,
J.
,
Turek
,
I.
, and
Fischer
,
F. D.
, 2005, “
Application of the Thermodynamic Extremal Principle to Modeling of Thermodynamic Processes in Material Sciences
,”
Philos. Mag.
1478-6435
85
, pp.
3699
3707
.
26.
Edelen
,
D. G. B.
, 1972, “
A Nonlinear Onsager Theory of Irreversibility
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
481
490
.
27.
Aernoudt
,
E.
,
Van Houtte
,
P.
, and
Leffers
,
T.
, 1993, “
Deformation and Textures of Metals of Large Strain
,”
Materials Science and Technology
,
H.
Mughrabi
, ed.,
VCH
,
Weinheim
, Vol.
6
, pp.
89
136
.
You do not currently have access to this content.