Abstract
The Principle of Maximum Dissipation Rate (PMD) can be exploited to derive homogeneous kinetic rate laws for the internal variables. A “normality structure” expressing the rates of the internal variables as normal to convex functions (entropy production rate, dissipation function as flow potentials) in the space of the conjugate thermodynamic forces is a direct consequence of the PMD. This paper can be considered as a note to Yang et al., 2005, ASME J. Appl. Mech., 72, pp. 322–329.
Issue Section:
Technical Papers
References
1.
Onsager
,
L.
,
1931, “Reciprocal
Relations in Irreversible Processes I.
,” Phys.
Rev.
0031-899X,
37
, pp.
405
–426
. 2.
Ziegler
,
H.
,
1961, “Zwei
Extremalprinzipien der irreversiblen Thermodynamik
,”
Ing.-Arch.
0020-1154, 30
, pp.
410
–416
.3.
Ziegler
,
H.
,
1963, Some Extremum Principles
in Irreversible Thermodynamics With Application to Continuum
Mechanics
, I. N.
Sneddon
and
R.
Hill
, eds.,
North-Holland
,
Amsterdam
, Vol. 4
, Chap. II,
pp. 91
–193
.4.
Ziegler
,
H.
,
1977, An Introduction to
Thermomechanics
, North-Holland
,
Amsterdam
.5.
Ziegler
,
H.
, and
Wehrli
,
C.
,
1987, “On a Principle of
Maximal Rate of Entropy Production
,” J. Non-Equil.
Thermodyn.
0304-0204, 12
, pp.
229
–243
.6.
Svoboda
,
J.
,
Turek
,
I.
, and
Sklenička
,
V.
,
1990, “Unified
Thermodynamic Treatment of Cavity Nucleation and Growth in High Temperature
Creep
,” Acta Metall. Mater.
0956-7151, 38
, pp.
573
–580
.7.
Svoboda
,
J.
, and
Turek
,
I.
,
1991, “On
Diffusion-Controlled Evolution of Closed Solid State Thermodynamic Systems
at Constant Temperature and Pressure
,” Philos. Mag.
B
1364-2812, 64
, pp.
749
–759
.8.
Cocks
, A. C.
F.
, Gill
, S. P.
A.
, and Pan
, J.
Z.
, 1999,
“Modelling Microstructure Evolution in Engineering
Materials
,” Advances in Applied Mechanics
,
E. v.
d.
Giessen
and
Th. Y.
Wu
, eds.,
Academic
, San
Diego
, Vol. 36
, pp.
81
–162
.9.
Gill
, S. P.
A.
, Cornforth
, M.
G.
, and Cocks
, A.
C. F.
, 2001,
“Modelling Microstructure Evolution in Engineering
Materials
,” Int. J. Plast.
0749-6419, 17
, pp.
669
–690
.10.
Svoboda
,
J.
, and
Lukáš
,
P.
,
2000, “Creep Deformation
Modelling of Superalloy Single Crystals
,” Acta
Mater.
1359-6454, 48
, pp.
2519
–2528
.11.
Svoboda
,
J.
,
Fischer
, F.
D.
, Fratzl
,
P.
, and
Kroupa
,
A.
,
2002, “Diffusion in
Multi-Component Systems With No or Dense Sources and Sinks for
Vacancies
,” Acta Mater.
1359-6454, 50
, pp.
1369
–1381
. 12.
Fischer
, F.
D.
, Svoboda
,
J.
, and
Fratzl
,
P.
,
2003, “A Thermodynamical
Approach to Grain Growth and Coarsening
,” Philos.
Mag.
1478-6435, 83
, pp.
1075
–1093
.13.
Svoboda
,
J.
,
Gamsjäger
,
E.
,
Fischer
, F.
D.
, and Fratzl
,
P.
,
2004, “Application of
the Thermodynamic Extremal Principle to the Diffusional Phase
Transformations
,” Acta Mater.
1359-6454, 52
, pp.
959
–967
. 14.
Svoboda
,
J.
,
Fischer
, F.
D.
, Fratzl
,
P.
, and
Kozeschnik
,
E.
,
2004, “Modelling of
Kinetics in Multi-Component Multi-Phase Multi-Particle Systems
I.—Theory
,” Mater. Sci. Eng., A
0921-5093, 385
, pp.
166
–174
.15.
Kozeschnik
,
E.
,
Svoboda
,
J.
,
Fratzl
,
P.
, and
Fischer
, F.
D.
, 2004,
“Modelling of Kinetics in Multi-Component Multi-Phase
Multi-Particle Systems II.—Numerical Solution and
Application
,” Mater. Sci. Eng., A
0921-5093, 385
, pp.
157
–165
.16.
Yang
,
Q.
,
Tham
, L.
G.
, and Swoboda
,
G.
,
2005, “Normality
Structures with Homogeneous Kinetic Rate Laws
,” ASME
J. Appl. Mech.
0021-8936,
72
, pp.
322
–329
. 17.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
, W.
Y.
, 2005,
“Relationship Between Normality Structure and Orthogonality
Condition
,” Mech. Res. Commun.
0093-6413, 32
, pp.
582
–589
. 18.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
, W.
Y.
, 2005,
“Microscopic Thermodynamic Basis of Normality Structure of
Inelastic Constitutive Relations
,” Mech. Res.
Commun.
0093-6413, 32
, pp.
590
–596
. 19.
Yang
,
Q.
,
Chen
,
X.
, and
Zhou
, W.
Y.
, 2005,
“On Microscopic Thermodynamic Mechanisms of Damage Evolution
Laws
,” Int. J. Damage Mech.
1056-7895, 14
, pp.
261
–293
. 20.
Rice
, J.
R.
, 1971,
“Inelastic Constitutive Relations for Solids: An Integral
Variable Theory and its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096, 19
, pp.
433
–455
. 21.
Rice
, J.
R.
, 1975,
“Continuum Mechanics and Thermodynamics of Plasticity in
Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
, A. S.
Argon
, ed.,
MIT Press
, Cambridge,
MA
, pp.
23
–79
.22.
Müller
,
I.
, and
Ruggeri
,
T.
,
1993, Extended
Thermodynamics
, Springer-Verlag
,
New York
.23.
Fried
,
E.
, and
Gurtin
, M.
E.
, 2004,
“A Unified Treatment of Evolving Interfaces Accordings for
Small Deformations and Atomic Transport With Emphasis on Grain-Boundaries
and Epitaxy
,” Advances in Applied
Mechanics
, H.
Aref
, E. v.
d.
Giessen
, eds.,
Elsevier
,
Amsterdam
, Vol. 40
, pp.
1
–177
.24.
Fischer
, F.
D.
, and Simha
, N.
K.
, 2004,
“Influence of Material Flux on the Jump Relations at a
Singular Interface in a Multicomponent Solid
,” Acta
Mech.
0001-5970, 171
, pp.
213
–223
.25.
Svoboda
,
J.
,
Turek
,
I.
, and
Fischer
, F.
D.
, 2005,
“Application of the Thermodynamic Extremal Principle to
Modeling of Thermodynamic Processes in Material Sciences
,”
Philos. Mag.
1478-6435
85
, pp.
3699
–3707
.26.
Edelen
, D. G.
B.
, 1972,
“A Nonlinear Onsager Theory of
Irreversibility
,” Int. J. Eng. Sci.
0020-7225, 10
, pp.
481
–490
. 27.
Aernoudt
,
E.
,
Van Houtte
,
P.
, and
Leffers
,
T.
,
1993, “Deformation and
Textures of Metals of Large Strain
,” Materials
Science and Technology
, H.
Mughrabi
, ed.,
VCH
,
Weinheim
, Vol. 6
, pp.
89
–136
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.