Plate impact experiments and impact recovery experiments were performed on 92.93wt.% aluminas using a 100mmdia compressed-gas gun. Free surface velocity histories were traced by a velocity interferometry system for any reflector (VISAR) velocity interferometer. There is a recompression signal in free surface velocity, which shows evidence of a failure wave in impacted alumina. The failure wave velocities are 1.27kms and 1.46kms at stresses of 7.54GPa and 8.56GPa, respectively. It drops to 0.21kms after the material released. SEM analysis of recovered samples showed the transit of intergranular microcracks to transgranular microcracks with increasing shock loading. A failure wave in impacted ceramics is a continuous fracture zone, which may be associated with the damage accumulation process during the propagation of shock waves. Then a progressive fracture model was proposed to describe the failure wave formation and propagation in shocked ceramics. The governing equation of the failure wave is characterized by inelastic bulk strain with material damage and fracture. Numerical simulation of the free surface velocity was performed in good agreement with the plate impact experiments. And the longitudinal, lateral, and shear stress histories upon the arrival of the failure wave were predicted, which present the diminished shear strength and lost spall strength in the failed layer.

1.
Bless
,
S. J.
,
Brar
,
N. S.
, and
Rosenberg
,
Z.
, 1990, “
Failure of Ceramic and Glass Rods Under Dynamic Compression
,”
Shock Compression of Condensed Matter—1989, 6th American Physical Society Topical Conference on Shock Compression of Condensed Matter
,
S. C.
Schmidt
et al.
, eds.,
New Mexico
, pp.
939
942
.
2.
Rasorenov
,
S. V.
,
Kanel
,
G. I.
,
Fortov
,
V. E.
, and
Abasehov
,
M. M.
, 1991, “
The Fracture of Glass Under High-Pressure Impulsive Loading
,”
High Press. Res.
0895-7959,
6
, pp.
225
232
.
3.
Kanel
,
G. I.
,
Rasorenov
,
S. V.
, and
Fortov
,
V. E.
, 1992, “
The Failure Waves and Spallations in Homogeneous Brittle Materials
,”
Shock Compression of Condensed Matter—1991, 7th American Physical Society Topical Conference on Shock Compression of Condensed Matter
,
S. C.
Schmidt
et al.
, eds.,
VA
, pp.
451
454
.
4.
Rosenberg
,
Z.
,
Bourne
,
N. K.
, and
Millett
,
J.
, 1996, “
Direct Measurements of Strain in Shock-Loaded Glass Specimens
,”
J. Appl. Phys.
0021-8979,
79
, pp.
3971
3974
.
5.
Bourne
,
N. K.
,
Millett
,
J.
, and
Rosenberg
,
Z.
, 1997, “
On the Origin of Failure Waves in Glass
,”
J. Appl. Phys.
0021-8979,
81
, pp.
6670
6674
.
6.
Bourne
,
N. K.
,
Millett
,
J.
,
Rosenberg
,
Z.
, and
Murray
,
N.
, 1998, “
On the Shock Induced Failure of Brittle Solids
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1887
1908
.
7.
Millett
,
J.
,
Bourne
,
N. K.
, and
Rosenberg
,
Z.
, 2000, “
Measurements of Strain in a Shock Loaded, High-Density Glass
,” Shock Compression of Condensed Matter—1999,
AIP Conf. Proc.
0094-243X,
505
, pp.
607
610
.
8.
Cazamias
,
J. U.
,
Fiske
,
P. S.
, and
Bless
,
S. J.
, 2000, “
Sound Speeds of Post-Failure Wave Glass
,”
Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena, EXPLOMET 2000
,
K. P.
Staudhammer
et al.
, eds.,
New Mexico
, pp.
173
179
.
9.
He
,
H. L.
,
Jing
,
F. Q.
,
Jin
,
X. G.
, and
Kanel
,
G. I.
, 1998, “
Microstructure Damage of Glasses Under Shock Wave Compression
,”
J. High Press. Phys.
1000-5773,
12
, pp.
241
249
(in Chinese).
10.
Bless
,
S. J.
,
Brar
,
N. S.
,
Kanel
,
G. I.
, and
Rosenberg
,
Z.
, 1992, “
Failure Waves in Glass
,”
J. Am. Ceram. Soc.
0002-7820,
75
, pp.
1002
1004
.
11.
Bourne
,
N. K.
,
Rosenberg
,
Z.
, and
Field
,
J. E.
, 1995, “
High-Speed Photography of Compressive Failure in Glasses
,”
J. Appl. Phys.
0021-8979,
78
, pp.
3736
3739
.
12.
Bourne
,
N. K.
,
Rosenberg
,
Z.
, and
Field
,
J. E.
, 1998, “
Surface Fracture Zones in Shock-Loaded Polycrystalline Ceramics
,” Shock Compression of Condensed Matter—1997,
AIP Conf. Proc.
0094-243X,
429
, pp.
493
496
.
13.
Bourne
,
N. K.
,
Millett
,
J.
, and
Pickup
,
I.
, 1997, “
Delayed Failure in Shocked Silicon Carbide
,”
J. Appl. Phys.
0021-8979,
81
(
9
), pp.
6019
6023
.
14.
Zhang
,
Q. M.
,
Huang
,
F. L.
, and
Han
,
L. M.
, 2000, “
Failure Wave Motion of 3D-C∕SiC Composites Subjected to Shock Compression
,”
Chin. Sci. Bull.
1001-6538,
45
, pp.
408
411
.
15.
Grote
,
D. L.
,
Park
,
S. W.
, and
Zhou
,
M.
, 2001, “
Experimental Characterization of the Dynamic Failure Behavior of Mortar Under Impact Loading
,”
J. Appl. Phys.
0021-8979,
89
, pp.
2115
2123
.
16.
Clifton
,
R. J.
, 1993, “
Analysis of Failure Waves in Glasses
,”
Appl. Mech. Rev.
0003-6900,
46
(
12-1
), pp.
540
546
.
17.
Grady
,
D. E.
, 1994, “
Dynamic Failure of Brittle Solids
,” Sandia Technical Report No. TMDG0694.
18.
Brar
,
N. S.
, 2000, “
Failure Waves in Glass and Ceramics Under Shock Compression
,”
Shock Compression of Condensed Matter—1999
,
AIP Conference Proceedings
,
M. D.
Furnish
et al.
, eds.,
Utah
,
AIP
,
505
, pp.
601
606
.
19.
Kanel
,
G. I.
,
Bogatch
,
A. A.
,
Razorenov
,
S. V.
, and
Zhen
,
Chen
, 2002, “
Transformation of Shock Compression Pulses in Glass Due to the Failure Wave Phenomena
,”
J. Appl. Phys.
0021-8979,
92
(
9
), pp.
5045
5052
.
20.
Zhao
,
J. H.
,
Sun
,
C. W.
,
Zhao
,
F.
,
Duan
,
Z. P.
, et al.
, 2002, “
Velocity Overshoot of Rear Free-Surfaces of Glass Under Impact
,”
Explo. Shock Waves
,
22
(
1
), pp.
72
78
(in Chinese).
21.
Resnyansky
,
A. D.
,
Romensky
,
E. I.
, and
Bourne
,
N. K.
, 2003, “
Constitutive Modeling of Fracture Waves
,”
J. Appl. Phys.
0021-8979,
93
, pp.
1537
1545
.
22.
Partom
,
Y.
, 1998, “
Modeling Failure Waves in Glass
,”
Int. J. Impact Eng.
0734-743X,
21
(
9
), pp.
791
799
.
You do not currently have access to this content.