Mixed-mode dynamic crack growth behavior in a compositionally graded particle filled polymer is studied experimentally and computationally. Beams with single edge cracks initially aligned in the direction of the compositional gradient and subjected to one-point eccentric impact loading are examined. Optical interferometry along with high-speed photography is used to measure surface deformations around the crack tip. Two configurations, one with a crack on the stiffer side of a graded sheet and the second with a crack on the compliant side, are tested. The observed crack paths are distinctly different for these two configurations. Furthermore, the crack speed and stress intensity factor variations between the two configurations show significant differences. The optical measurements are examined with the aid of crack-tip fields, which incorporate local elastic modulus variations. To understand the role of material gradation on the observed crack paths, finite element models with cohesive elements are developed. A user-defined element subroutine for cohesive elements based on a bilinear traction-separation law is developed and implemented in a structural analysis environment. The necessary spatial variation of material properties is introduced into the continuum elements by first performing a thermal analysis and then by prescribing material properties as temperature dependent quantities. The simulated crack paths and crack speeds are found to be in qualitative agreement with the observed ones. The simulations also reveal differences in the energy dissipation in the two functionally graded material (FGM) cases. T-stresses and hence the crack-tip constraint are significantly different. Prior to crack initiation, larger negative T-stresses near the crack tip are seen when the crack is situated on the compliant side of the FGM.

1.
Kirugulige
,
M. S.
,
Kitey
,
R.
, and
Tippur
,
H. V.
, 2005, “
Dynamic Fracture Behavior of Model Sandwich Structures With Functionally Graded Core: A Feasibility Study
,”
Compos. Sci. Technol.
0266-3538,
65
, pp.
1052
1068
.
2.
Delale
,
F.
, and
Erdogan
,
F.
, 1983, “
The Crack Problem for a Non-Homogeneous Plane
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
609
614
.
3.
Konda
,
N.
, and
Erdogan
,
F.
, 1994, “
The Mixed-Mode Crack Problem in a Nonhomogeneous Elastic Medium
,”
Eng. Fract. Mech.
0013-7944,
47
(
4
), pp.
533
545
.
4.
Parameswaran
,
V.
, and
Shukla
,
A.
, 1999, “
Crack Tip Stress Fields for Dynamic Fracture in Functionally Graded Materials
,”
Mech. Mater.
0167-6636,
31
, pp.
579
596
.
5.
Chalivendra
,
V.
, and
Shukla
,
A.
, 2005, “
Transient Elastodynamic Crack Growth in Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
237
248
.
6.
Butcher
,
R. J.
,
Rousseau
,
C. E.
, and
Tippur
,
H. V.
, 1998, “
A Functionally Graded Particulate Composite: Preparation, Measurements and Failure Analysis
,”
Acta Mater.
1359-6454,
47
(
1
), pp.
259
268
.
7.
Rousseau
,
C.-E.
, and
Tippur
,
H. V.
, 2000, “
Compositionally Graded Materials With Cracks Normal to the Elastic Gradient
,”
Acta Mater.
1359-6454,
48
, pp.
4021
4033
.
8.
Rousseau
,
C.-E.
, and
Tippur
,
H. V.
, 2001, “
Dynamic Fracture of Compositionally Graded Materials With Cracks Along the Elastic Gradient: Experiments and Analysis
,”
Mech. Mater.
0167-6636,
37
, pp.
403
421
.
9.
Kirugulige
,
M. S.
, and
Tippur
,
H. V.
, 2006, “
Mixed Mode Dynamic Crack Growth in Functionally Graded Glass-Filled Epoxy
,”
Exp. Mech.
0014-4851,
46
(
2
), pp.
269
281
.
10.
Bittencourt
,
T. N.
,
Wawrzynek
,
P. A.
,
Ingraffea
,
A. R.
, and
Sousa
,
J. L.
, 1996, “
Quasi-Automatic Simulation of Crack Propagation for 2D LEFM Problems
,”
Eng. Fract. Mech.
0013-7944,
55
(
2
), pp.
321
334
.
11.
Nishioka
,
T.
, 1997, “
Computational Dynamic Fracture Mechanics
,”
Int. J. Fract.
0376-9429,
86
, pp.
127
159
.
12.
Nishioka
,
T.
,
Tokudome
,
H.
, and
Kinoshita
,
M.
, 2001, “
Dynamic Fracture Path Prediction in Impact Fracture Phenomena Using Moving Finite Element Method Based on Delaunay Automatic Mesh Generation
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5273
5301
.
13.
Kim
,
J. H.
, and
Paulino
,
G. H.
, 2004, “
Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading
,”
Int. J. Mecha. Mater. Des.
,
1
, pp.
63
94
.
14.
Tilbrook
,
M. T.
,
Moon
,
R. J.
, and
Hoffman
,
M.
, 2005, “
Finite Element Simulations of Crack Propagation in Functionally Graded Materials Under Flexural Loading
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
2444
2467
.
15.
Dugdale
,
D. C.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
16.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
17.
Needleman
,
A.
, 1987, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
525
531
.
18.
Xu
,
X. P.
, and
Needleman
,
A.
, 1994, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
0022-5096,
42
(
9
), pp.
1397
1434
.
19.
Wang
,
Z.
, and
Nakamura
,
T.
, 2004, “
Simulations of Crack Propagation is Elastic-Plastic Graded Materials
,”
Mech. Mater.
0167-6636,
36
, pp.
601
622
.
20.
Jin
,
Z. H.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, 2003, “
Cohesive Fracture Modeling of Elastic-Plastic Crack Growth in Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
70
(
14
), pp.
1885
1912
.
21.
Shim
,
D. J.
,
Paulino
,
G. H.
, and
Dodds
,
R. H.
, 2006, “
J Resistance Behavior in Functionally Graded Materials Using Cohesive Zone and Modified Boundary Layer Models
,”
Int. J. Fract.
0376-9429,
139
(
1
), pp.
91
117
.
22.
Geubelle
,
P. H.
, and
Baylor
,
J. S.
, 1998, “
Impact Induced Delamination of Composites: A 2D Simulation
,”
Composites, Part B
1359-8368,
29
, pp.
589
602
.
23.
Zavattieri
,
P. D.
,
Raghuram
,
P. V.
, and
Espinosa
,
H. D.
, 2001, “
A Computational Model of Ceramic Microstructures Subjected to Multi-Axial Dynamic Loading
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
27
68
.
24.
Zhang
,
Z.
, and
Paulino
,
G. H.
, 2005, “
Cohesive Zone Modeling of Dynamic Failure in Homogeneous and Functionally Graded Materials
,”
Int. J. Plast.
0749-6419,
21
, pp.
1195
1254
.
25.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
, 1994, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
1377
1397
.
26.
Madhusudhana
,
K. S.
, and
Narasimhan
,
R.
, 2002, “
Experimental and Numerical Investigations of Mixed Mode Crack Growth Resistance of a Ductile Adhesive Joint
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
865
883
.
27.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
(
20–22
), pp.
2899
2938
.
28.
Ortiz
,
M.
, and
Pandolfi
,
A.
, 1999, “
Finite-Deformation Irreversible Cohesive Elements for Three Dimensional Crack Propagation Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
1267
1282
.
29.
Belytschko
,
T.
, and
Black
,
A. T.
, 1999, “
Elastic Crack Growth in Finite Elements With Minimal Re-Meshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
, pp.
601
620
.
30.
Moes
,
N.
, and
Belytschko
,
T.
, 2002, “
Extended Finite Elements for Cohesive Crack Growth
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
813
833
.
31.
Erdogan
,
F.
, and
Sih
,
G. C.
, 1963, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME J. Basic Eng.
0021-9223,
85D
(
4
), pp.
519
525
.
32.
Dally
,
J. W.
, and
Sanford
,
R. J.
, 1987, “
Strain Gage Methods for Measuring the Opening Mode Stress Intensity Factor, KI
,”
Exp. Mech.
0014-4851,
49
, pp.
381
388
.
33.
Maleski
,
M. J.
,
Kirugulige
,
M. S.
, and
Tippur
,
H. V.
, 2004, “
A Method for Measuring Mode-I Crack Tip Constraint Under Static and Dynamic Loading Conditions
,”
Exp. Mech.
0014-4851,
44
(
5
), pp.
522
532
.
34.
Tippur
,
H. V.
,
Krishnaswamy
,
S.
, and
Rosakis
,
A. J.
, 1991, “
Optical Mapping of Crack Tip Deformations Using the Methods of Transmission and Reflection Coherent Gradient Sensing: A. Study of Crack Tip K-Dominance
,”
Int. J. Fract.
0376-9429,
52
, pp.
91
117
.
35.
Jain
,
N.
,
Rousseau
,
C. E.
, and
Shukla
,
A.
, 2004, “
Crack Tip Stress Fields in Functionally Graded Materials With Linearly Varying Properties
,”
Theor. Appl. Fract. Mech.
0167-8442,
42
, pp.
155
170
.
36.
2004, “
Theory and Users Manuals, I, II and III
,” ABAQUS, Version 6.5, Hibbit, Karlsson and Sorenson, RI.
37.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1978, “
Collocation, Dissipation and Overshoot for Time Integration Schemes in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
6
, pp.
99
117
.
38.
Rice
,
J. R.
, 1968, “
Mathematical Analysis in the Mechanics of Fracture
,”
Fracture, An Advanced Treatise
, Vol.
2
,
H.
Liebowitz
, ed.,
Academic
,
New York
, pp.
191
311
.
39.
Anlas
,
G.
,
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Fract.
0376-9429,
104
, pp.
131
143
.
40.
Kim
,
J. H.
, and
Paulino
,
G. H.
, 2002, “
Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
502
514
.
41.
Rousseau
,
C.-E.
, and
Tippur
,
H. V.
, 2002, “
Evaluation of Crack Tip Fields and Stress Intensity Factors in Functionally Graded Elastic Materials: Cracks Parallel to Elastic Gradient
,”
Int. J. Fract.
0376-9429,
114
, pp.
87
111
.
42.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
, 1997, “
Indentation of Solids With Gradients in Elastic Properties: Part—I. Point Force
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
2357
2392
.
43.
Owens
,
A. T.
, 2007, “
Development of a Split Hopkinson Bar for Testing Stress-Strain Response of Particulate Composites Under High Rates of Loading
,” MS thesis, Auburn University, Auburn TX.
44.
Paulino
,
G. H.
, and
Kim
,
J. H.
, 2004, “
A New Approach to Compute T-Stress in Functionally Graded Materials by Means of Interaction Integral Method
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1907
1950
.
45.
Abanto-Bueno
,
J.
, and
Lambros
,
J.
, 2006, “
An Experimental Study of Mixed Mode Crack Initiation and Growth in Functionally Graded Materials
,”
Exp. Mech.
0014-4851,
46
, pp.
179
196
.
You do not currently have access to this content.