The Green’s function for an anisotropic elastic half-space that is bonded to a thin elastic material of different anisotropy subject to a line force and a line dislocation is presented. Also presented is the Green’s function for two different anisotropic elastic half-spaces that are bonded to a thin elastic material of different anisotropy subject to a line force and a line dislocation in one of the half-spaces. The thickness h of the thin layer is assumed to be small compared with a reference length. Thus, instead of finding the solution in the thin layer and imposing the continuity conditions at the interface(s), we derive and apply effective boundary conditions for the interface between the layer and the body that take into account the existence of the layer.

1.
Bovik
,
P.
, 1994, “
On the Modelling of Thin Interface Layers in Elastic and Acoustic Scattering Problems
,”
Q. J. Mech. Appl. Math.
0033-5614,
47
, pp.
17
40
.
2.
Niklasson
,
A. J.
,
Datta
,
S. K.
, and
Dunn
,
M. L.
, 2000, “
On Approximate Guided Waves in Plates With Thin Anisotropic Coatings by Means of Effective Boundary Conditions
,”
J. Acoust. Soc. Am.
0001-4966,
108
(
3
), pp.
924
933
.
3.
Benveniste
,
Y.
, 2006, “
A General Interface Model for a Three-Dimensional Curved Thin Anisotropic Interphase Between Two Anisotropic Media
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
708
734
.
4.
Ting
,
T. C. T.
, 2007, “
Mechanics of a Thin Anisotropic Elastic Layer and a Layer That is Bonded to an Anisotropic Elastic Body or Bodies
,”
Proc. R. Soc. London
0962-8452,
463
(
2085
), pp.
2223
2239
.
5.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
3
, pp.
625
646
.
6.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1973, “
Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Function and Surface Waves in Anisotropic Elastic Solids
,”
Phys. Norv.
0031-8930,
7
, pp.
13
19
.
7.
Chadwick
,
P.
, and
Smith
,
G. D.
, 1977, “
Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials
,”
Adv. Appl. Mech.
0065-2156,
17
, pp.
303
376
.
8.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
New York
.
9.
Willis
,
J. R.
, 1971, “
Fracture Mechanics of Interfacial Cracks
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
353
368
.
10.
Braekhus
,
J.
, and
Loth
,
J.
, 1971, “
Dislocations at and Near Planar Interface
,”
Phys. Status Solidi B
0370-1972,
43
, pp.
651
657
.
11.
Barnett
,
D. M.
, and
Lothe
,
J.
, 1974, “
An Image Force Theorem for Dislocations in Bicrystals
,”
J. Phys. F: Met. Phys.
0305-4608,
4
, pp.
1618
1635
.
12.
Kirchner
,
H. O. K.
, and
Lothe
,
J.
, 1987, “
Displacements and Tractions Along Interfaces
,”
Philos. Mag. A
0141-8610,
56
, pp.
583
594
.
13.
Tewary
,
V. K.
,
Wagoner
,
R. H.
, and
Hirth
,
J. P.
, 1989, “
Elastic Green’s Function for a Composite Solid With a Planar Crack in the Interface
,”
J. Mater. Res.
0884-2914,
4
, pp.
124
136
.
14.
Suo
,
Z.
, 1990, “
Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,”
Proc. R. Soc. London, Ser. A
1364-5021,
427
, pp.
331
358
.
15.
Qu
,
J.
, and
Li
,
Q.
, 1991, “
Interfacial Dislocations and Its Application to Interface Crack in Anisotropic Bimaterials
,”
J. Elast.
0374-3535,
26
, pp.
167
195
.
16.
Qu
,
J.
, 1991, “
Greens’ Functions in Anisotropic Bimaterials
,”
Modern Theory of Anisotropic Elasticity and Applications
, (
SIAM Proceedings Series
),
J. J.
Wu
,
T. C. T.
Ting
, and
D. M.
Barnett
, eds.,
SIAM
,
Philadelphia
, pp.
62
73
.
17.
Ting
,
T. C. T.
, 1992, “
Image Singularities of Green’s Functions for Anisotropic Elastic Half-Spaces and Bimaterials
,”
Q. J. Mech. Appl. Math.
0033-5614,
45
, pp.
119
139
.
18.
Ma
,
C.-C.
, and
Lin
,
R.-L.
, 2002, “
Full-Field Analysis of a Planar Anisotropic Layered Half-Plane for Concentrated Forces and Edge Dislocations
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
2369
2392
.
19.
Voigt
,
W.
, 1910,
Lehrbuch der Kristallphysik
,
Teubner
,
Leipzig
.
20.
Ingebrigtsen
,
K. A.
, and
Tonning
,
A.
, 1969, “
Elastic Surface Waves in Crystal
,”
Phys. Rev.
0031-899X,
184
, pp.
942
951
.
You do not currently have access to this content.