In a recent investigation of microstructural effects in finite periodic multilayers, we have shown that under Mode I loading, the crack-opening displacement approaches that of the same crack in an equivalent homogenized material as the microstructure comprised of alternating stiff and soft layers becomes increasingly finer. In contrast, Mode I stress intensity factor asymptotically converges to values that depend on the stiffness of the cracked layer. Preliminary calculation of Mode I strain energy release rate as a function of the microstructural refinement suggested that this may be a better fracture mechanics parameter for assessing fracture toughness of periodic layered media. Herein, we extend the above investigation by considering both Mode I and II loading to study the effect of layer modulus ratio on fracture mechanics parameters as a function of microstructural refinement. The previously introduced concept of partial homogenization of the microstructure sufficiently far from the crack is also pursued in order to gauge its efficiency in correctly capturing fracture mechanics parameters with a minimum of computational effort. The fracture mechanics parameters are shown to be influenced by the local microstructure to an extent that depends on the layer modulus mismatch. An accurate calculation of these parameters requires the retention of several layers adjacent to the affected cracked layer whose number depends on the modulus mismatch and loading mode.

1.
Drago
,
A. S.
, and
Pindera
,
M.-J.
, 2007, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous Vs Periodic Microstructures
,”
Compos. Sci. Technol.
0266-3538,
67
(
6
), pp.
1243
1263
.
2.
Sanchez-Palencia
,
E.
, 1980,
Non-Inhomogeneous Media and Vibration Theory
,
Lecture Notes in Physics
Vol.
127
,
Springer-Verlag
,
Berlin
.
3.
Suquet
,
P. M.
, 1987,
Elements of Homogenization for Inelastic Solid Mechanics
,
Lecture Notes in Physics
Vol.
272
,
Springer-Verlag
,
Berlin
, pp.
193
278
.
4.
1997,
Homogenization and Porous Media
,
U.
Hornung
, ed.,
Springer
,
Berlin
.
5.
Pagano
,
N. J.
, and
Rybicki
,
E. F.
, 1974, “
On the Significance of the Effective Modulus Solutions for Fibrous Composites
,”
J. Compos. Mater.
0021-9983,
8
, pp.
214
228
.
6.
Hollister
,
S. J.
, and
Kikuchi
,
N.
, 1992, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites
,”
Comput. Mech.
0178-7675,
10
, pp.
73
95
.
7.
Pindera
,
M.-J.
,
Aboudi
,
J.
, and
Arnold
,
S. M.
, 1995, “
Limitations of the Uncoupled, RVE-Based Micromechanical Approach in the Analysis of Functionally Graded Composites
,”
Mech. Mater.
0167-6636,
20
(
1
), pp.
77
94
.
8.
Pagano
,
N. J.
, and
Yuan
,
F. G.
, 2000, “
The Significance of Effective Modulus Theory (Homogenization) in Composite Laminate Mechanics
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
2471
2488
.
9.
Wang
,
A. S. D.
, and
Yan
,
K. C.
, 2005, “
On Modeling Matrix Failure Modes
,”
Composites, Part A
1359-835X,
36
, pp.
1335
1346
.
10.
Lipton
,
R. P.
, 2003, “
Assessment of the Local Stress State Through Macroscopic Variables
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
361
, pp.
921
946
.
11.
Chen
,
L.
,
Urquhart
,
E. E.
, and
Pindera
,
M.-J.
, 2005. “
Microstructural Effects in Multilayers With Large Moduli Contrast Loaded by Flat Punch
,”
AIAA J.
0001-1452,
43
(
5
), pp.
962
973
.
12.
Pindera
,
M.-J.
, and
Chen
,
L.
, 2007, “
Microstructural Effects in Finite Multilayers With Aligned Cracks
,”
Eng. Fract. Mech.
0013-7944,
74
(
11
), pp.
1697
1718
.
13.
Pindera
,
M.-J.
, and
Lane
,
M. S.
, 1993, “
Frictionless Contact of Layered Half Planes. Part I: Analysis
,”
ASME J. Appl. Mech.
0021-8936,
60
(
3
), pp.
633
639
.
14.
Chen
,
L.
, and
Pindera
,
M.-J.
, 2007, “
Plane Analysis of Finite Multilayered Media With Multiple Aligned Cracks. Part I: Theory
,”
ASME J. Appl. Mech.
0021-8936,
74
(
1
), pp.
128
143
.
15.
Chen
,
L.
, and
Pindera
,
M.-J.
, 2007, “
Plane Analysis of Finite Multilayered Media With Multiple Aligned Cracks. Part II: Numerical Results
,”
ASME J. Appl. Mech.
0021-8936,
74
(
1
), pp.
144
160
.
16.
Postma
,
G. W.
, 1955, “
Wave Propagation in a Stratified Medium
,”
Geophysics
0016-8033,
20
(
4
), pp.
780
806
.
17.
Bufler
,
H.
, 1971, “
Theory of Elasticity of a Multilayered Medium
,”
J. Elast.
0374-3535,
1
, pp.
125
143
.
18.
Pindera
,
M.-J.
, 1991, “
Local∕Global Stiffness Matrix Formulation for Composite Materials and Structures
,”
Composites Eng.
0961-9526,
1
(
2
), pp.
69
83
.
19.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity (Theory and Applications)
,
Oxford University Press
,
Oxford
.
20.
Erdogan
,
F.
, and
Gupta
,
G. D.
, 1971, “
The Stress Analysis of Multi-Layered Composites With a Flaw
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
39
61
.
21.
Erdogan
,
F.
, and
Gupta
,
G. D.
, 1971, “
Layered Composites With an Interface Flaw
,”
Int. J. Solids Struct.
0020-7683,
7
, pp.
1089
1107
.
22.
Erdogan
,
F.
,
Gupta
,
G. D.
, and
Cook
,
T. S.
, 1973, “
Numerical Solution of Singular Integral Equations
,”
Methods of Analysis and Solutions of Crack Problems
,
G. C.
Sih
, ed.,
Noordhoff, Leyden
,
Netherlands
, pp.
368
425
.
23.
Sih
,
G. C.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1965, “
On Cracks in Rectilinearly Anisotropic Bodies
,”
Int. J. Fract. Mech.
0020-7268,
1
, pp.
189
203
.
24.
Hutchinson
,
J. W.
, and
Suo
,
Z.
, 1992, “
Mixed Mode Cracking in Layered Media
,”
Adv. Appl. Mech.
0065-2156,
29
, pp.
63
191
.
25.
Wang
,
S. S.
,
Mandell
,
J. F.
, and
McGarry
,
F. J.
, 1978, “
An Analysis of the Crack Tip Stress Field in DCB Adhesive Fracture Specimens
,”
Int. J. Fract.
0376-9429,
14
, pp.
39
58
.
You do not currently have access to this content.