Peristaltic flow of a third grade fluid in a circular cylindrical tube is undertaken when the no-slip condition at the tube wall is no longer valid. The governing nonlinear equation together with nonlinear boundary conditions is solved analytically by means of the perturbation method for small values of the non-Newtonian parameter, the Debroah number. A numerical solution is also obtained for which no restriction is imposed on the non-Newtonian parameter involved in the governing equation and the boundary conditions. A comparison of the series solution and the numerical solution is presented. Furthermore, the effects of slip and non-Newtonian parameters on the axial velocity and stream function are discussed in detail. The salient features of pumping and trapping are discussed with particular focus on the effects of slip and non-Newtonian parameters. It is observed that an increase in the slip parameter decreases the peristaltic pumping rate for a given pressure rise. On the contrary, the peristaltic pumping rate increases with an increase in the slip parameter for a given pressure drop (copumping). The size of the trapped bolus decreases and finally vanishes for large values of the slip parameter.

1.
Shapiro
,
A. H.
,
Jaffrin
,
M. Y.
, and
Weinberg
,
S. L.
, 1969, “
Peristaltic Pumping With Long Wavelength at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
37
, pp.
799
825
.
2.
Fung
,
Y. C.
, and
Yih
,
C. S.
, 1968, “
Peristaltic Transport
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
669
675
.
3.
Mekheimer
,
Kh. S.
, 2002, “
Peristaltic Transport of a Couple-Stress Fluid in Uniform and Non-Uniform Channels
,”
Biorheology
0006-355X,
39
, pp.
755
765
.
4.
El Shehawey
,
E. F.
, and
Mekheimer
,
Kh. S.
, 1994, “
Couple-Stresses in Peristaltic Transport of Fluids
,”
J. Phys. D
0022-3727,
27
, pp.
1163
1170
.
5.
Mekheimer
,
Kh. S.
,
El-Shehawey
,
E. F.
, and
Alaw
,
A. M.
, 1998, “
Peristaltic Motion of a Particle Fluid Suspension in a Planar Channel
,”
Int. J. Theor. Phys.
,
37
, pp.
2895
2920
. 0020-7748
6.
Haroun
,
M. H.
, 2007, “
Non-Linear Peristaltic Flow of a Fourth Grade Fluid in an Inclined Asymmetric Channel
,”
Comput. Mater. Sci.
,
39
, pp.
324
333
. 0927-0256
7.
Haroun
,
M. H.
, 2007, “
Effect of Deborah Number and Phase Difference on Peristaltic Transport of a Third-Order Fluid in an Asymmetric Channel
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
(
8
), pp.
1464
1480
.
8.
El-Shahed
,
M.
, and
Haroun
,
M. H.
, 2003, “
Peristaltic Transport of Johnson–Segalman Fluid Under Effect of a Magnetic Field
,”
Math. Probl. Eng.
,
6
, pp.
663
677
. 1024-123X
9.
Siddiqui
,
A. M.
, and
Schwarz
,
W. H.
, 1994, “
Peristaltic Flow of a Second Order Fluid in Tubes
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
53
, pp.
257
284
.
10.
Hayat
,
T.
,
Wang
,
Y.
,
Siddiqui
,
A. M.
,
Hutter
,
K.
, and
Asghar
,
S.
, 2002, “
Peristaltic Transport of a Third Order Fluid in a Circular Cylindrical Tube
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
, pp.
1691
1706
.
11.
Hayat
,
T.
,
Wang
,
Y.
,
Hutter
,
K.
,
Asghar
,
S.
, and
Siddiqui
,
A. M.
, 2004, “
Peristaltic Transport of an Oldroyd-B Fluid in a Planar Channel
,”
Math. Probl. Eng.
1024-123X,
2004
, pp.
347
376
.
12.
Hayat
,
T.
,
Mahomed
,
F. M.
, and
Asghar
,
S.
, 2005, “
Peristaltic Flow of Magnetohydrodynamic Johnson–Segalman Fluid
,”
Nonlinear Dyn.
0924-090X,
40
, pp.
375
385
.
13.
Hayat
,
T.
, and
Ali
,
N.
, 2006, “
On Mechanism of Peristaltic Flows for Power-Law Fluids
,”
Physica A
,
371
, pp.
188
194
. 0378-4371
14.
Hayat
,
T.
, and
Ali
,
N.
, 2006, “
Peristaltically Induced Motion of a MHD Third Grade Fluid in a Deformable Tube
,”
Physica A
,
370
, pp.
225
239
. 0378-4371
15.
Hayat
,
T.
,
Khan
,
M.
,
Asghar
,
S.
, and
Siddiqui
,
A. M.
, 2006, “
A Mathematical Model of Peristalsis in Tubes Through a Porous Medium
,”
J. Porous Media
,
9
, pp.
55
67
. 1091-028X
16.
Hayat
,
T.
, and
Ali
,
N.
, 2007, “
A Mathematical Description of Peristaltic Hydromagnetic Flow in a Tube
,”
Appl. Math. Comput.
,
188
, pp.
1491
1502
. 0096-3003
17.
Wang
,
Y.
,
Hayat
,
T.
, and
Hutter
,
K.
, 2007, “
Peristaltic Flow of a Johnson–Segalman Fluid Through a Deformable Tube
,”
Theor. Comput. Fluid Dyn.
0935-4964,
21
, pp.
369
380
.
18.
Beavers
,
G. S.
, and
Joseph
,
D. D.
, 1967, “
Boundary Condition at a Naturally Permeable Wall
,”
J. Fluid Mech.
0022-1120,
30
, pp.
197
207
.
19.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
, 2002, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
1070-6631,
14
, pp.
L9
L12
.
20.
Kwang-Hua Chu
,
W.
, and
Fang
,
J.
, 2000, “
Peristaltic Transport in a Slip Flow
,”
Eur. Phys. J. B
,
16
, pp.
543
547
. 1434-6028
21.
Georgiou
,
G. C.
, and
Crochet
,
M. J.
, 1994, “
Compressible Viscous Flow in Slits With Slip at the Wall
,”
J. Rheol.
0148-6055,
38
, pp.
639
654
.
22.
Rao
,
I. J.
, and
Rajagopal
,
K. R.
, 1999, “
The Effect of Slip Boundary Conditions on the Flow of Fluids in a Channel
,”
Acta Mech.
0001-5970,
135
, pp.
113
126
.
23.
Kwang-Hua Chu
,
W.
, 1996, “
Stokes Slip Flow Between Corrugated Walls
,”
ZAMP
,
47
, pp.
591
598
. 0044-2275
24.
Chu
,
K.-H. W.
, 1999, “
Small Knudsen Number Flow in a Corrugated Tube
,”
Meccanica
,
34
, pp.
133
137
. 0025-6455
25.
El-Shehawy
,
E. F.
,
El-Dabe
,
N. T.
, and
El-Desoky
,
I. M.
, 2006, “
Slip Effects on the Peristaltic Flow of a Non-Newtonian Maxwellian Fluid
,”
Acta Mech.
0001-5970,
186
, pp.
141
159
.
26.
Fosdick
,
R. L.
, and
Rajagopal
,
K. R.
, 1980, “
Thermodynamics and Stability of Fluids of Third Grade
,”
Proc. R. Soc. London, Ser. A
1364-5021,
339
, pp.
351
377
.
27.
Wang
,
Y.
,
Hayat
,
T.
,
Ali
,
N.
, and
Oberlack
,
M.
, 2008, “
Magnetohydrodynamic Peristaltic Motion of a Sisko Fluid in a Symmetric or Asymmetric Channel
,”
Physica A
,
387
, pp.
347
362
. 0378-4371
28.
Kwang-Hua Chu
,
W.
, and
Fang
,
J.
, 2000, “
On Peristaltic Transport in Small-Knudsen-Number Flow
,”
Meccanica
,
35
, pp.
69
74
. 0025-6455
You do not currently have access to this content.