In this paper, we extend the finite volume direct average micromechanics to enable the use of quadrilateral subcells. To do this work, the quadrilateral subcells are used to discretize the repeating unit cells first. Then the average displacement and traction defined on the boundary of the subcell are evaluated by direct integral method. This contrasts with the original formulation in which all of the subcells are rectangular. Following the discretization, the cell problem is defined by combining the directly volume-average of the subcell stress equilibrium equations with the displacement and traction continuity in a surface-average sense across the adjacent subcell faces. In order to assemble the above equations and conditions into a global equation system, the global and local number systems, which index the boundary of subcell in different manners, are employed by the extended method. Finally, the global equation system is solved and the solutions give the formulations of the microstress field and the global elastic moduli of material. The introduction of quadrilateral subcells increases the efficiency of modeling the material’s microstructure and eliminates the stress concentrations at the curvilinear bimaterial corners. Herein, the advantage of the extension is presented by comparing the global moduli and local stress fields predicted by the present method with the corresponding results obtained from the original version.

1.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2005, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
177
195
.
2.
Pinderal
,
M.-J.
, and
Bansal
,
Y.
, 2007, “
On the Micromechanics-Based Simulation of Metal Matrix Composite Response
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
, pp.
468
482
.
3.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2006, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
0749-6419,
22
(
5
), pp.
775
825
.
4.
Bansal
,
Y.
, 2005, “
Finite Volume Direct Averaging Micromechanics of Heterogeneous Media
,” Ph.D., thesis, Engineering and Applied Science University of Virginia, VA.
5.
Kalamkarov
,
A. L.
, and
Kolpakov
,
A. G.
, 1997,
Analysis, Design and Optimization of Composite Structures
,
Wiley
,
New York
.
6.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 1999, “
Higher-Order Theory for Functionally Graded Materials
,”
Composites, Part B
1359-8368,
33
(
8
), pp.
777
832
.
7.
Aboudi
,
J.
,
Pindera
,
M.-J.
, and
Arnold
,
S. M.
, 2002, “
High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials
,” Paper No. NASA-TM-2002-211469.
8.
Bansal
,
Y.
, and
Pindera
,
M.-J.
, 2003, “
Efficient Reformulation of the Thermo-Elastic Higher-Order Theory for Functionally Graded Materials
,”
J. Therm. Stresses
0149-5739,
26
(
11–12
), pp.
1055
1092
.
9.
Cavalcante
,
M. A. A.
, 2006, “
Modeling of the Transient Thermo-Mechanical Behavior of Composite Material Structures by the Finite-Volume Theory
,” MS thesis, Civil Engineering Department, Federal University of Alagoas, Maceio, Alagoas, Brazil.
10.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
935
945
.
11.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.-J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part II: Numerical Results
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
946
957
.
12.
Gattu
,
M.
, 2007, “
Parametric Finite Volume Theory for Periodic Heterogeneous Materials
,” MS thesis, Civil Engineering Department, University of Virginia, VA.
13.
Benssousan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
, 1978,
Asymptotic Analysis for Periodic Structures
,
North-Holland
,
Amsterdam
.
14.
Sanchez-Palencia
,
E.
, 1980,
Non-Homogeneous Media and Vibration Theory
(
Lecture Notes in Physics
Vol.
127
)
Springer-Verlag
,
Berlin
.
15.
Kouznetsova
,
V.
,
Brekelemans
,
W. A. M.
, and
Baaijens
,
F. P. T.
, 2001, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
0178-7675,
27
, pp.
37
48
.
16.
Kouznetsova
,
V.
,
Greers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
, 2002, “
Multi-Scale Constitutive Modeling of Heterogeneous Materials With a Gradient-Enhanced Computational Homogenization Scheme
,”
Int. J. Numer. Methods Eng.
0029-5981,
54
, pp.
1235
1260
.
17.
Van der Sluis
,
O.
,
Schreurs
,
P. J. G.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
, 2000, “
Overall Behaviour of Heterogeneous Elastoviscoplastic Materials: Effect of Microstructural Modeling
,”
Mech. Mater.
0167-6636,
32
, pp.
449
462
.
18.
Terada
,
K.
,
Hori
,
M.
,
Kyoya
,
T.
, and
Kikuchi
,
N.
, 2000, “
Simulation of the Multi-Scale Convergence in Computational Homogenization Approach
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2285
2311
.
19.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
20.
Sun
,
C. T.
,
Vaidya
,
R. S.
, 1996, “
Prediction of Composite Properties From a Representative Volume Element
,”
Compos. Sci. Technol.
0266-3538,
56
(
2
), pp.
171
179
.
21.
Kenaga
,
D.
,
Doyle
,
J. F.
, and
Sun
,
C. T.
, 1987, “
The Characterization of Boron∕Aluminum Composite in the Nonlinear Range as an Orthotropic Elastic-Plastic Material
,”
J. Compos. Mater.
0021-9983,
21
(
6
), pp.
516
531
.
22.
Whitney
,
J. M.
, and
Riley
,
M. B.
, 1966, “
Elastic Properties of Fiber Reinforced Composite Materials
,”
AIAA J.
0001-1452,
4
(
9
), pp.
1537
1542
.
23.
Paley
,
M.
, and
Aboudi
,
J.
, 1992, “
Micromechanical Analysis of Composites by the Generalized Method of Cells
,”
Mech. Mater.
0167-6636,
14
, pp.
127
139
.
24.
Gao
,
X. G.
,
Song
,
Y. D.
, and
Sun
,
Z. G.
, 2005, “
Research on Variation of Effective Performances of Composites Induced by the Stochastic Fiber Size
,”
J. Materials Science Engineering
,
23
(
95
), pp.
335
340
.
25.
Gao
,
X. G.
,
Song
,
Y. D.
, and
Sun
,
Z. G.
, 2005, “
Research on the Discrepancy of Composite Effective Properties Induced by the Stochastic Fiber Location
,”
J. Aerospace Power
,
20
(
4
), pp.
584
589
.
26.
Sun
,
Z. G.
,
Song
,
Y. D.
,
Gao
,
X. G.
, and
Gao
,
D. P.
, 2004, “
Influence of Micro-Structural Geometry on Thermal Expansion Coefficient of Composites
,”
Chinese Journal of Applied Mechanics
,
21
, pp.
146
150
.
27.
Song
,
Y. D.
,
Sun
,
Z. G.
, and
Gao
,
X. G.
, 2005, “
Research on Discrepancy of Fiber Reinforced Composite Effective Performance
,”
J. Aerospace Power
,
20
, pp.
230
235
.
You do not currently have access to this content.