In this study both linearized and the exponential forms of the Phan-Thien–Tanner model (PTT) are used to simulate the peristaltic flow in a tube. The solutions are investigated under zero Reynolds number and infinitely long wavelength assumptions. Computational solutions are obtained for pressure rise and friction force. The results of the average chyme velocity in the small intestine show that the PTT model is in good agreement with the experimental results, as shown in Table 1. Also, the magnitude of pressure rise and friction force of the exponential PTT model are smaller than in linear PTT model for different values of flow rate. The peristaltic pumping and the augmented pumping are discussed for various values of the physical parameters of interest. The pressure rise and friction force of PTT were compared with other studies in both Newtonian and non-Newtonian cases.

1.
Siddiqui
,
A. M.
, and
Schwarz
,
W. H.
, 1994, “
Peristaltic Motion of a Second-Order Fluid in Tubes
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
53
, pp.
257
284
.
2.
El Misiery
,
A. M.
,
Elshehawey
,
E. F.
, and
Hakeem
,
A. A.
, 1996, “
Peristaltic Motion of an Incompressible Generalized Newtonian Fluid in a Planar Channel
,”
J. Phys. Soc. Jpn.
0031-9015,
65
, pp.
3524
3529
.
3.
Elshehawey
,
E. F.
,
El Misiery
,
A. M.
, and
Abd El Naby
,
A. E. H.
, 1998, “
Peristaltic Motion of Generalized Newtonian Fluid in a Non-Uniform Channel
,”
J. Phys. Soc. Jpn.
0031-9015,
67
, pp.
434
440
.
4.
Abd El Naby
,
A. E. H.
,
El Misiery
,
A. M.
, 2002, “
Effects of an Endoscope and Generalized Newtonian Fluid on Peristaltic Motion
,”
Int. J. Appl. Math Comput. Sci.
0867-857X,
128
, pp.
19
35
.
5.
El Misiery
,
A. M.
,
Abd El Naby
,
A. E. H.
, and
El Nagar
,
A. H.
, 2003, “
Effects of a Fluid With Variable Viscosity and an Endoscope on Peristaltic Motion
,”
J. Phys. Soc. Jpn.
0031-9015,
72
, pp.
89
94
.
6.
Hayat
,
T.
,
Wang
,
Y.
,
Siddiqui
,
A. M.
,
Hutter
,
K.
, and
Asghar
,
S.
, 2002, “
Peristaltic Transport of a Third-Order Fluid in Circular Cylindrical Tube
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
, pp.
1691
1706
.
7.
Quinzani
,
L.
,
Armstrong
,
R. C.
, and
Brown
,
R. A.
, 1995, “
Use of Coupled Birefringence and LDV Studies of Flow Through a Planar Contraction to Test Constitutive Equations for Concentrated Polymer Solutions
,”
J. Rheol.
0148-6055,
39
, pp.
1201
1228
.
8.
Azaiez
,
J.
,
Guenette
,
R.
, and
Aït-Kadi
,
A.
, 1996, “
Numerical Simulation of Viscoelastic Flows Through a Planar Contraction
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
62
, pp.
253
277
.
9.
Baloch
,
A.
,
Townsend
,
P.
, and
Webster
,
M. F.
, 1996, “
On Vortex Development in Viscoelastic Expansion and Contraction Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
65
, pp.
133
149
.
10.
Oliveira
,
P. J.
, and
Pinho
,
F. T.
, 1999, “
Analytical Solution for Fully Developed Channel and Pipe Flow of Phan-Thien–Tanner Fluids
,”
J. Fluid Mech.
0022-1120,
387
, pp.
271
280
.
11.
Phan-Thien
,
N.
, and
Tanner
,
R. I.
, 1977, “
A New Constitutive Equation Derived From Network Theory
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
2
, pp.
353
365
.
12.
Phan-Thien
,
N.
, 1978, “
A Nonlinear Network Viscoelastic Model
,”
J. Rheol.
0148-6055,
22
, pp.
259
283
.
13.
Jaffrin
,
M. Y.
, and
Shapiro
,
A. H.
, 1971, “
Peristaltic Pumping
,”
Annu. Rev. Fluid Mech.
0066-4189,
3
, pp.
13
36
.
14.
Barton
,
C.
, and
Raynor
,
S.
, 1968, “
Peristaltic Flow in Tubes
,”
Bull. Math. Biophys.
0007-4985,
30
, pp.
663
680
.
15.
Srivastava
,
L. M.
, and
Srivastava
,
V. P.
, 1985, “
Peristaltic Transport of a Non-Newtonian Fluid Applications to the Vas Deferens and Small Intestine
,”
Ann. Biomed. Eng.
0090-6964,
13
, pp.
137
153
.
16.
Pinho
,
F. T.
, and
Oliveira
,
P. J.
, 2000, “
Analysis of Forced Convection in Pipes and Channels With the Simplified Phan-Thien–Tanner Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2273
2287
.
17.
Shukla
,
J. B.
,
Parihar
,
R. S.
,
Rao
,
R. P.
, and
Gupta
,
S. P.
, 1980, “
Effects of Peripheral-Layer Viscosity on Peristaltic Transport of a Bio-Fluid
,”
J. Fluid Mech.
0022-1120,
97
(
2
), pp.
225
237
.
18.
Elshehawey
,
E. F.
, and
Sobh
,
A. M. F.
, 2001, “
Peristaltic Viscoelastic Fluid in a Tube
,”
Int. J. Math. Math. Sci.
0161-1712,
26
, pp.
21
34
.
19.
Abd El Naby
,
A. E. H.
, 1997, “
Some Problems on Peristaltic Motion for Different Fluids
,” Ph.D. thesis, Mansoura University, Egypt.
20.
Vender
,
A. J.
,
Sherman
,
J. H.
, and
Luciano
,
D.
, 1975,
Human Physiology: The Mechanics of Body Function
,
Tata McGraw-Hill
,
India
.
21.
Srivastava
,
L. M.
,
Srivastava
,
V. P.
, and
Sinha
,
S. N.
, 1983, “
Peristaltic Transport of a Physiological Fluid Part I Flow in Non-Uniform Geometry
,”
Biorheology
0006-355X,
20
, pp.
153
166
.
You do not currently have access to this content.