In this article, the Eringen’s nonlocal elasticity theory has been incorporated into classical/local Bernoulli-Euler rod model to capture unique properties of the nanorods under the umbrella of continuum mechanics theory. The spectral finite element (SFE) formulation of nanorods is performed. SFE formulation is carried out and the exact shape functions (frequency dependent) and dynamic stiffness matrix are obtained as function of nonlocal scale parameter. It has been found that the small scale affects the exact shape functions and the elements of the dynamic stiffness matrix. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave dispersion properties of carbon nanotubes.

References

1.
Kroto
,
H. W.
,
Heath
,
J. R.
,
Obrien
,
S. C.
,
Curl
,
R. F.
, and
Smalley
,
R. E.
, 1985, “
C60 - Buckminsterfullerene
,”
Nature
,
318
, pp.
162
163
.
2.
Dabbousi
,
B. O.
,
RodriguezViejo
,
J.
,
Mikulec
,
F. V.
,
Heine
,
J. R.
,
Mattoussi
,
H.
,
Ober
,
R.
,
Jensen
,
K. F.
, and
Bawendi
,
M. G.
, 1997, “
(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites
,”
J. Phys. Chem. B
,
101
, pp.
9463
9475
.
3.
Vossen
,
J. L.
, and
Kern
,
W.
, 1978,
Thin Film Processes
,
Academic
,
London
.
4.
Senturia
,
S. D.
, 2001,
Microsystem Design
,
Kluwer Academic Publishers
,
Norwell
.
5.
Martin
,
C. R.
, 1996, “
Membrane-Based Synthesis of Nanomaterials
,”
Chem. Mater.
8
, pp.
1739
1746
.
6.
Fonoberov
,
V. A.
, and
Balandin
,
A. A.
, 2004,
Phys. Status Solidi
,
12
, p.
67
.
7.
Love
,
A. E. H.
, 1944,
A Treatise on Mathematical Theory of Elasticity
,
Dover
,
New York
.
8.
Eringen
,
A. C.
, and
Edelen
,
D.G.B.
, 1972, “
On Non-Local Elasticity
,”
Int. J. Comput. Eng. Sci.
10
, p.
233
.
9.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
54
, pp.
4703
4710
.
10.
Eringen
,
A. C.
, 1972, “
Linear Theory of Non-Local Elasticity and Dispersion of Plane Waves
,”
Int. J. Comput. Eng. Sci.
,
10
, p.
425
.
11.
Eringen
,
A. C.
, 1996,
Non-Local Polar Field Models,
Academic
,
New York
.
12.
Peddieson
,
J.
,
Buchanan
,
G. R.
, and
McNitt
,
R. P.
, 2003, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Comput. Eng. Sci.
41
, pp.
305
312
.
13.
Wang
,
Q.
, and
Wang
,
C. M.
, 2007, “
On Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modeling Carbon Nanotubes
,”
Nanotechnology
,
18
, p.
075702
.
14.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
94
, pp.
7281
7287
.
15.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Xie
,
X. Y.
, 2005, “
Free Transverse Vibration of Double-Walled Carbon Nanotubes Using a Theory of Nonlocal Elasticity
,”
Phys. Rev. B
71
, p.
195404
.
16.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
, 2009, “
Nonlocal Scale Effects on Wave Propagation in Multi-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
47
,
526
538
.
17.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
, 2010, “
Ultrasonic Wave Characteristics of a Nanorods via Nonlocal Strain Gradient Models
,”
J. Appl. Phys.
107
, p.
084312
.
18.
Narendar
,
S.
and
Gopalakrishnan
,
S.
, 2010, “
Terahertz Wave Characteristics of a Single-Walled Carbon Nanotube Containing a Fluid Flow Using the Nonlocal Timoshenko Beam Model
,”
Physica E (Amsterdam)
42
, pp.
1706
1712
.
19.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
, 2010, “
Nonlocal Scale Effects on Ultrasonic Wave Characteristics of Nanorods
,”
Physica E (Amsterdam)
,
42
, pp.
1601
1604
.
20.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Wang
,
J. S.
, 2004, “
Small-Scale Effects on Buckling of Multiwalled Carbon Nanotubes Under Axial cCompression
,”
Phys. Rev. B
70
, p.
205430
.
21.
Xu
,
M.
, 2006, “
Free Transverse Vibrations of Nano-to-Micron Scale Beams
,”
Proc. R. Soc. London
,
462
, pp.
2977
2995
.
22.
Wang
,
Q.
, 2005, “
Wave Propagation in Carbon Nanotubes via Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
98
, p.
124301
.
23.
Wang
,
Q.
, and
Varadan
,
V. K.
, 2007, “
Application of Nonlocal Elastic Shell Theory in Wave Propagation Analysis of Carbon Nanotubes
,”
Smart Materials and Structures
,
16
, pp.
178
190
.
24.
Aydogdu
,
M.
, 2009, “
Axial Vibration of the Nanorods With the Nonlocal Continuum Rod Model
,”
2009, Physica E
,
41
, pp.
861
864
.
25.
Eringen
,
A. C.
, 1987, “
Theory of Nonlocal Elasticity and Some Applications
,”
Res. Mech.
,
21
, pp.
313
342
.
26.
Lazar
,
M.
,
Maugin
,
G.
, and
Aifantis
,
E. C.
, 2006, “
On the Theory of Nonlocal Elasticity of Bi-Helmholtz Type and Some Applications
,”
Int. J. Solids Struct.
,
43
, pp.
1404
1421
.
27.
Doyle
,
J. F.
, 1997,
Wave Propagation in Structures
,
Springer-Verlag
,
New York
.
28.
Roy Mahapatra
,
D.
and
Gopalakrishnan
,
S.
, 2003, “
Axial-Shearbending Coupled Wave Propagation in Thick Composite Beams
,”
Composite Structures
,
59
, pp.
67
88
.
29.
Mahapatra
,
D. R.
,
Gopalakrishnan
,
S.
, and
Sankar
,
T. S.
, 2000, “
Spectral Element Based Solutions for Wave Propagation Analysis of Multiply Connected Unsymmetric Laminated Composite Beams
,”
J. Sound Vib.
,
237
, pp.
819
836
.
30.
Roy Mahapatra
,
D.
and
Gopalakrishnan
,
S.
, 2003, “
A Spectral Finite Element for Analysis of Wave Propagation in Uniform Composite Tubes
,”
J. Sound Vib.
,
268
, pp.
429
463
.
31.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2003, “
A Spectrally Formulated Finite Element for Wave Propagation in Functionally Graded Beams
,”
Int. J. Solids Struct.
,
40
pp.
2421
2448
.
32.
Rizzi
,
S. A.
, and
Doyle
,
J. F.
, 1992, “
A Spectral Element Approach to Wave Motion in Layered Solids
,”
ASME J. Vibr. Acoust.
,
114
, pp.
569
577
.
33.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2004, “
A Spectrally Formulated Finite Element for Wave Propagation Analysis in Layered Composite Media
,”
Int. J. Solids Struct.
,
41
, pp.
5155
5183
.
34.
Gopalakrishnan
,
S.
, and
Doyle
,
J. F.
, 1994, “
Wave Propagation in Connected Waveguides of Varying Cross-Section
,”
J. Sound Vib.
,
175
, pp.
347
363
.
35.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
, 2003, “
Various Numerical Techniques for Analysis of Longitudinal Wave Propagation in Inhomogeneous One Dimensional Waveguides
,”
Acta Mechanica
,
162
, pp.
1
27
.
36.
Gopalakrishnan
,
S.
,
Chakraborty
,
A.
, and
Roy Mahapatra
,
D.
, 2008,
Spectral Finite Element Method,
Springer Verlag
,
London
.
37.
Wang
,
Q.
,
Han
,
Q. K.
, and
Wen
,
B. C.
, 2008, “
Estimate of Material Property of Carbon Nanotubes via Nonlocal Elasticity
,”
Advanced Theoretical Applied Mechanics
,
1
, pp.
1
10
.
38.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
, 2010, “
Theoretical Estimation of Length Dependent In-Plane Stiffness of Single Walled Carbon Nanotubes Using the Nonlocal Elasticity Theory
,”
J. Comput. Theor. Nanosci.
,
7
(
11
), pp.
2349
2354
.
39.
Gopalakrishnan
,
S.
, and
Doyle
,
J. F.
, 1995, “
Spectral Super-Elements for Wave Propagation in Structures With Local Nonuniformities
,”
Comput.Methods Appl. Mech. Eng.
,
121
, pp.
77
90
.
40.
Wang
,
L. F.
, and
Hu
,
H. Y.
, 2005, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
71
, p.
195412
.
41.
Zhang
,
X.
,
Jiao
,
K.
,
Sharma
,
P.
, and
Yakobson
,
B. I.
, 2006, “An Atomistic and Non-Classical Continuum Field Theoretic Perspective of Elastic Interactions Between Defects (Force Dipoles) of Various Symmetries and Application to Graphene,”
J. Mech. Phys. Solids
,
54
, pp.
2304
2329
.
42.
Hu
,
Y. G.
,
Liew
,
K. M.
,
Wang
,
Q.
,
He
,
X. Q.
, and
Yakobson
,
B. I.
, 2008, “
Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
, pp.
3475
3485
.
You do not currently have access to this content.