The method of reverberation ray matrix (MRRM) is extended to research the transient wave propagation and early short time transient responses of the stiffened laminated composite plates subjected to impact loads. The rib-stiffened laminated plates are modeled as the coupling systems in which the flexural motion for the laminated plate is considered, and the flexural and torsional motions are taken into account for the laminated stiffeners, which are modeled as the beams. The dynamic models of the laminated plates and beams in the Laplace phase space are established based on the first order shear deformation theory (FSDT). The reverberation ray matrix is determined by the continuous and boundary conditions of the stiffened laminated plate. The transient response corresponding to each ray group is calculated by the FFT algorithm. From the numerical results, it is seen that the early short time transient accelerations of the stiffened laminated plates are very large, while the early short time transient displacements are very small. Furthermore, the influences of the stiffeners and different impulse signals on the early short time transient responses of the stiffened laminated plates are also studied.

References

1.
Olson
,
M. D.
, and
Hazell
,
C. R.
, 1977, “
Vibration Studies on Some Integral Rib-Stiffened Plates
,”
J. Sound Vib.
,
50
(
1
), pp.
43
61
.
2.
Holopainen
,
T. P.
, 1995, “
Finite Element Free Vibration Analysis of Eccentrically Stiffened Plates
,”
Compos. Struct.
,
56
(
6
), pp.
993
1007
.
3.
Kolli
,
M.
, and
Chandrashekhara
,
K.
, 1996, “
Finite Element Analysis of Stiffened Laminated Plates Under Transverse Loading
,”
Compos. Sci. Technol.
,
56
, pp.
1355
1361
.
4.
Satish Kumar
,
Y. V.
, and
Mukhopadhyay
,
M.
, 1999, “
A New Finite Element for Buckling Analysis of Laminated Stiffened Plates
,”
Compos. Struct.
,
46
, pp.
321
331
.
5.
Sadek
,
E. A.
, and
Tawfik
,
S. A.
, 2000, “
A Finite Element Model for the Analysis of Stiffened Laminated Plates
,”
Compos. Struct.
,
75
, pp.
369
383
.
6.
Rikards
,
R.
,
Chate
,
A.
,
Ozolinsh
,
O.
, 2001, “
Analysis for Buckling and Vibrations of Composite Stiffened Shells and Plates
,”
Compos. Struct.
,
51
, pp.
361
370
.
7.
Yuan
,
W. X.
, and
Dawe
,
D. J.
, 2004, “
Free Vibration and Stability Analysis of Stiffened Sandwich Plates
,”
Compos. Struct.
,
63
, pp.
123
137
.
8.
Chen
,
Z.
, and
Xie
,
W. C.
, 2005, “
Vibration Localization in Plates Rib-Stiffened in two Orthogonal Directions
,”
J. Sound Vib.
,
280
, pp.
235
262
.
9.
Thinh
,
T. I.
, and
Quoc
,
T. H.
, 2010, “
Finite Element Modeling and Experimental Study on Bending and Vibration of Laminated Stiffened Glass Fiber/Polyester Composite Plates
,”
Comput. Mater. Sci.
,
49
, pp.
S383
S389
.
10.
Qing
,
G. H.
,
Qiu
,
J. J.
, and
Liu
,
Y. H.
, 2006, “
Free Vibration Analysis of Stiffened Laminated Plates
,”
Int. J. Solids Struct.
,
43
, pp.
1357
1371
.
11.
Satish Kumar
,
Y. V.
, and
Srivastava
,
A.
, 2003, “
First Ply Failure Analysis of Laminated Stiffened Plates
,”
Compos. Struct.
,
60
, pp.
307
365
.
12.
Bhar
,
A.
,
Phoenix
,
S. S.
, and
Satsangi
,
S. K.
, 2010, “
Finite Element Analysis of Laminated Composite Stiffened Plates Using FSDT and HSDT: A Comparative Perspective
,”
Compos. Struct.
,
92
, pp.
312
321
.
13.
Li
,
L.
, and
Ren
,
X. H.
, 2010, “
Stiffened Plate Bending Analysis in Terms of Refined Triangular Laminated Plate Element
,”
Compos. Struct.
,
92
, pp.
2936
2945
.
14.
Mittelstedt
,
C.
, and
Schröder
,
K. U.
, 2010, “
Local Postbuckling of Hat-Stringer-Stiffened Composite Laminated Plates Under Transverse Compression
,”
Compos. Struct.
,
92
, pp.
2830
2844
.
15.
Grice
,
R. M.
, and
Pinnington
,
R. J.
, 2000, “
A Method for the Vibration Analysis of Built-Up Structures, Part Ι: Introduction and Analytical Analysis of the Plate-Stiffened Beam
,”
J. Sound Vib.
,
230
(
4
), pp.
825
849
.
16.
Grice
,
R. M.
, and
Pinnington
,
R. J.
, 2000, “
A Method for the Vibration Analysis of Built-Up Structures, Part ΙΙ: Analysis of the Plate-Stiffened Beam Using a Combination of Finite Element Analysis and Analytical Impedances
,”
J. Sound Vib.
,
230
(
4
), pp.
851
875
.
17.
Louca
,
L. A.
,
Pan
,
Y. G.
, and
Harding
,
J. E.
, 1998, “
Response of Stiffened and Unstiffened Plates Subjected to Blast Loading
,”
Eng. Struct.
,
20
(
12
), pp.
1079
1086
.
18.
Gong
,
S. W.
, and
Lam
,
K. Y.
, 1999, “
Transient Response of Stiffened Composite Plates Subjected to Low Velocity Impact
,”
Composites, Part B
,
30
, pp.
473
484
.
19.
Türkmen
,
H. S.
, and
Mecitoğlu
,
Z.
, 1999, “
Dynamic Response of a Stiffened Laminated Composite Plate Subjected to Blast Load
,”
J. Sound Vib.
,
221
(
3
), pp.
371
389
.
20.
Kant
,
T.
,
Arora
,
C. P.
, and
Varaiya
,
J. H.
, 1992, “
Finite Element Transient Analysis of Composite and Sandwich Plates Based on a Refined Theory and a Mode Superposition Method
,”
Compos. Struct.
,
22
, pp.
109
120
.
21.
Satish Kumar
,
Y. V.
, and
Mukhopadhyay
,
M.
, 2002, “
Transient Response Analysis of Laminated Stiffened Plates
,”
Compos. Struct.
,
58
, pp.
97
107
.
22.
Pao
,
Y. H.
,
Keh
,
D. C.
, and
Howard
,
S. M.
, 1999, “
Dynamics Response and Wave Propagation in Trusses and Frames
,”
AIAA J.
,
37
, pp.
594
603
.
23.
Howard
,
S. M.
, and
Pao
,
Y. H.
, 1998, “
Analysis and Experiment on Stress Waves in Planar Trusses
,”
J. Eng. Mech.
,
124
, pp.
884
891
.
24.
Guo
,
Y. Q.
, and
Chen
,
W. Q.
, 2007, “
Dynamic Analysis of Space Structures With Multiple Tuned Mass Damper
,”
Eng. Struct.
,
27
, pp.
3390
3403
.
25.
Guo
,
Y. Q.
,
Chen
,
W. Q.
, and
Pao
,
Y. H.
, 2008, “
Dynamic Analysis of Space Frame: The Method of Reverberation-Ray Matrix and Orthogonality of Normal Modes
,”
J. Sound Vib.
,
317
, pp.
716
738
.
26.
Pao
,
Y. H.
,
Su
,
X. Y.
, and
Tian
,
J. Y.
, 2000, “
Reverberation Method for Propagation of Sound in Multilayered Liquid
,”
J. Sound Vib.
,
230
, pp.
743
760
.
27.
Su
,
X. Y.
,
Tian
,
J. Y.
, and
Pao
,
Y. H.
, 2002, “
Application of the Reverberation-Ray Matrix to the Propagation of Elastic Waves in a Layered Solid
,”
Int. J. Solids Struct.
,
39
, pp.
5447
5463
.
28.
Zhu
,
J.
,
Chen
,
W. Q.
,
Ye
,
G. R.
, and
,
C. F.
, 2009, “
Recursive Formulations for the Method of Reverberation-Ray Matrix and the Application
,”
Sci. China, Ser. G
,
52
, pp.
293
302
.
29.
Chen
,
J. F.
, and
Pao
,
Y. H.
, 2003, “
Effects of Causality and Joint Conditions on Method of Reverberation-Ray Matrix
,”
AIAA J.
,
41
, pp.
1138
1142
.
30.
Pao
,
Y. H.
,
Chen
,
W. Q.
, and
Su
,
X. Y.
, 2007, “
The Reverberation-Ray Matrix and Transfer Matrix Analyses of Unidirectional Wave Motion
,”
Wave Motion
,
44
, pp.
419
438
.
31.
Liu
,
C. C.
,
Li
,
F. M.
,
Liang
,
T. W.
, and
Huang
,
W. H.
, 2011, “
Early Short Time Transient Response of Finite L-Shaped Mindlin Plate
,”
Wave Motion
,
48
, pp.
371
391
.
32.
Chow
,
T. S.
, 1971, “
On the Propagation of Flexural Waves in an Orthotropic Laminated Plate and its Response to an Impulsive Load
,”
J. Compos. Mater.
,
5
, pp.
306
319
.
33.
Khdeir
,
A. A.
, and
Reddy
,
J. N.
, 1989, “
Exact Solution for Transient Response of Symmetric Cross-Ply Laminates Using a High-Order Plate Theory
,”
Compos. Sci. Technol.
,
34
, pp.
205
224
.
34.
Li
,
F. M.
,
Wang
,
Y. S.
,
Hu
,
C.
, and
Huang
,
W. H.
, 2005, “
Localization of Elastic Waves in Periodic Rib-Stiffened Rectangular Plates Under Axial Compressive Load
,”
J. Sound Vib.
,
281
, pp.
265
273
.
35.
Ungar
,
E. E.
, 1961, “
Transmission of Plate Flexural Waves Through Reinforcing Beams: Dynamic Stress Concentrations
,”
J. Acoust. Soc. Am.
,
61
, pp.
633
639
.
36.
Kessissoglou
,
N. J.
, 2001, “
An Analytical and Experimental Investigation on Active Control of the Flexural Wave Transmission in a Simply Supported Ribbed Plate
,”
J. Sound Vib.
,
240
(
1
), pp.
71
85
.
37.
Dong
,
X. J.
,
Meng
,
G.
,
Li
,
H. G.
, and
Ye
,
L.
, 2005, “
Vibration Analysis of a Stepped Laminated Composite Timoshenko Beam
,”
Mech. Res. Commun.
,
32
, pp.
572
581
.
38.
Miya
,
K.
,
Vesaka
,
M.
, and
Moon
,
F. C.
, 1982, “
Finite Element Analysis of Vibration of Toroidal Field Coils Coupled With Laplace Transform
,”
J. Appl. Mech.
,
49
, pp.
594
600
.
You do not currently have access to this content.