A simple and physically meaningful analytical (“mathematical”) predictive model is developed using two-dimensional (plane-stress) theory-of-elasticity approach (TEA) for the evaluation of the effect of the circular configuration of the substrate (wafer) on the elastic lattice-misfit (mismatch) stresses (LMS) in a semiconductor and particularly in a gallium nitride (GaN) film grown on such a substrate. The addressed stresses include (1) the interfacial shearing stress supposedly responsible for the occurrence and growth of dislocations, for possible delaminations, and for the cohesive strength of the intermediate strain buffering material, if any, as well as (2) normal radial and circumferential (tangential) stresses acting in the film cross-sections and responsible for the short- and long-term strength (fracture toughness) of the film. The TEA results are compared with the formulas obtained using strength-of-materials approach (SMA). This approach considers, instead of the actual circular substrate, an elongated bi-material rectangular strip of unit width and of finite length equal to the wafer diameter. The numerical example is carried out, as an illustration, for a GaN film grown on a silicon carbide (SiC) substrate. It is concluded that the SMA model is acceptable for understanding the physics of the state of stress and for the prediction of the normal stresses in the major midportion of the assembly. The SMA model underestimates, however, the maximum interfacial shearing stress at the assembly periphery and, because of the very nature of the SMA, is unable to address the circumferential stress. The developed TEA model can be used, along with the author's earlier publications and the (traditional and routine) finite-element analyses (FEA), to assess the merits and shortcomings of a particular semiconductor crystal growth (SCG) technology, as far as the level of the expected LMS are concerned, before the actual experimentation and/or fabrication is decided upon and conducted.

References

1.
Chen
,
C. H.
,
Coffie
,
R.
,
Krishnamurthy
,
K.
,
Keller
,
S.
,
Rodwell
,
M.
, and
Mishra
,
U. K.
,
2000
, “
Dual-Gate AlGaN/GaN Modulation-Doped Field-Effect Transistors With Cut-Off Frequencies f60 GHz
,”
IEEE Electron Device Lett.
,
21
(
12
), pp.
549
551
.10.1109/55.887461
2.
Albulet
,
M.
,
2001
,
RF Power Amplifier
,
SciTech Publishing
,
Raleigh, NC
.
3.
Green
,
B. M.
,
Tilak
,
V.
,
Lee
,
S.
,
Kim
,
H.
,
Smart
,
J. A.
,
Webb
,
K. J.
,
Shealy
,
J. R.
, and
Eastman
,
L. F.
,
2001
, “
High-Power Broad-Band AlGaN HEMT MMIC on SiC Substrates
,”
IEEE Trans. Microwave Theory Tech.
,
49
(
12
), pp.
2486
2493
.10.1109/22.971640
4.
Xie
S.
,
Paidi
,
V.
,
Coffie
,
R.
,
Keller
,
S.
,
Heikman
,
S.
,
Moran
,
B.
,
Chini
,
A.
,
DanBaars
,
S. P.
,
Mishra
,
U.
,
Long
,
S.
, and
Rodwell
,
M. J. W.
,
2003
, “
High Linearity of Class B Power Amplifiers in GaN HEMT Technology
,”
IEEE Microw. Wirel. Compon. Lett.
,
13
(
7
), pp.
284
286
.10.1109/LMWC.2003.811682
5.
Gao
,
S.
,
2006
, “
High Efficiency Class-F RF/Microwave Power Amplifiers
,”
IEEE Microw. Mag.
,
7
(
1
), pp.
40
48
.10.1109/MMW.2006.1614233
6.
Kim
,
C.
,
Robinson
,
I. K.
,
Myoung
,
J.
,
Shim
,
K.
,
Yoo
,
M.-C.
, and
Kim
,
K.
,
1996
, “
Critical Thickness of GaN Thin Films on Sapphire (0001)
,”
Appl. Phys. Lett.
,
69
(
16
), pp.
2358
2360
.10.1063/1.117524
7.
Lee
,
S. C.
,
Dawson
,
L. R.
,
Pattada
,
B.
,
Brueck
,
S. R. J.
,
Jiang
,
Y.-B.
, and
Xu
,
H. F.
,
2004
, “
Strain-Relieved, Dislocation-Free InxGa1-xAs/GaAs(001) Heterostructure by Nanoscale-Patterned Growth
,”
Appl. Phys. Lett.
,
85
, pp.
4181
4183
.10.1063/1.1811799
8.
Singhal
,
S.
,
Li
,
T.
,
Chaudhari
,
A.
,
Hanson
,
A. W.
,
Therrien
,
R.
,
Johnson
,
J. W.
,
Nagy
,
W.
,
Marquart
,
J.
,
Rajagopal
,
P.
,
Roberts
,
J. C.
,
Piner
,
E. L.
,
Kizilyalli
,
I. C.
, and
Linthicum
,
K. J.
,
2006
, “
Reliability of Large Periphery GaN-on-Si HFETs
,”
Microelectron. Reliab.
,
46
, pp.
1247
1253
.10.1016/j.microrel.2006.02.009
9.
Wilcox
,
G.
, and
Andrews
,
M.
,
2009
, “
TriQuint Delivers High Power—Wideband GaN Technology
,” http://www.triquint.com/products/tech-library/docs/articles/tqnt_jan09-mpd-ver2.pdf
10.
Skromme
,
J.
,
Zhao
,
H.
,
Wang
,
D.
,
Kong
,
H. S.
,
Leonard
,
M. T.
,
Bulman
,
G. E.
, and
Molner
,
R. J.
,
1997
, “
Strain Determination in Heteroepitaxial GaN
,”
Appl. Phys. Lett.
,
71
, pp.
829
831
.10.1063/1.119659
11.
Barghout
,
K.
, and
Chaudhuri
,
J.
,
2004
, “
Calculation of Residual Thermal Stress in GaN Epitaxial Layers Grown on Technologically Important Substrates
,”
J. Mater. Sci.
,
39
, pp.
5817
5823
.10.1023/B:JMSC.0000040094.33095.6f
12.
Zhang
,
B. S.
,
Wu
,
M.
,
Liu
,
J. P.
,
Chen
,
J.
,
Zhu
,
J. J.
,
Shen
,
X. M.
,
Feng
,
G.
,
Zhao
,
D. G.
,
Wang
,
Y. T.
,
Yang
,
H.
, and
Boyd
,
A. R.
,
2004
, “
Reduction of Tensile Stress in GaN Grown on Si(1 1 1) by Inserting a Low-Temperature AlN Interlayer
,”
J. Cryst. Growth
,
270
, pp.
316
321
.10.1016/j.jcrysgro.2004.06.040
13.
Acord
,
J. D.
,
Raghavan
,
S.
,
Snyder
,
D. W.
, and
Redwing
,
J. M.
,
2004
, “
In Situ Stress Measurements During MOCVD Growth of AlGaN on SiC
,”
J. Cryst. Growth
,
272
(
1-4
), pp.
65
71
.10.1016/j.jcrysgro.2004.08.033
14.
Karabacak
,
T.
,
Picu
,
C. R.
,
Senkevich
,
J. J.
,
Wang
,
G.-C.
, and
Lu
,
T.-M.
,
2004
, “
Stress Reduction in Tungsten Films Using Nano-Structured Compliant Layers
,”
J. Appl. Phys.
,
96
(
10
), pp.
5740
5746
.10.1063/1.1803106
15.
Kapolnek
,
D.
,
Wu
,
X. H.
,
Heying
,
B.
,
Keller
,
S.
,
Keller
,
B. P.
,
Mishra
,
U. K.
,
DenBaars
,
S. P.
, and
Speck
,
J. S.
,
1995
, “
Structural Evolution in Epitaxial Metalorganic Chemical Vapor Deposition Grown GaN Films on Sapphire
,”
Appl. Phys. Lett.
,
67
, pp.
1541
1543
.10.1063/1.114486
16.
Keller
,
S.
,
Keller
,
B. P.
,
Wu
,
Y.-F.
,
Heying
,
B.
,
Speck
,
J. S.
,
Mishra
,
U. K.
,
DenBaars
,
S. P.
,
1996
, “
Influence of Sapphire Nitridation on Properties of GaN Grown by Metalorganic Chemical Vapor Deposition
,”
Appl. Phys. Lett.
,
68
, pp.
1525
1527
.10.1063/1.115687
17.
Lee
,
J.
,
Cook
,
T. E.
,
Bryan
,
E. N.
,
Hartman
,
J. D.
,
Davis
,
R. F.
, and
Nemanich
,
R. J.
,
2001
, “
Wafer Bonding of SiC and GaN
,”
Proceedings of the MRS Symposium
, Vol.
681E
.
18.
Suhir
,
E.
,
1986
, “
Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
657
660
.10.1115/1.3171827
19.
Luryi
,
S.
, and
Suhir
,
E.
,
1986
, “
New Approach to the High Quality Epitaxial Growth of Lattice-Mismatched Materials
,”
Appl. Phys. Lett.
,
49
(
3
), pp.
140
142
.10.1063/1.97204
20.
Van Mieghem
,
P.
,
Jain
,
S. C.
,
Nijs
,
J.
, and
Van Overstraeten
,
R.
,
1994
, “
Stress Relaxation in Laterally Small Strained Semiconductor Epilayers
,”
J. Appl. Phys.
,
75
(
1
), pp.
666
668
.10.1063/1.355813
21.
Wang
,
J.
,
Tottori
,
S.
,
Hao
,
M.-S.
,
Ishikawa
,
Y.
,
Sugahara
,
T.
,
Yamashita
,
K.
, and
Sakai
,
S.
,
1998
, “
Lateral Overgrowth of Thick GaN on Patterned GaN Substrate by Sublimation Technique
,”
Jpn. J. Appl. Phys.
,
37
, pp.
4475
4476
.10.1143/JJAP.37.4475
22.
Mynbaeva
,
M.
,
Titkov
,
A.
,
Kryganovskii
,
A.
,
Ratnikov
,
V.
,
Huhtinen
,
H.
,
Laiho
,
R.
, and
Dmitriev
,
V.
,
2000
, “
Structural Characterization and Strain Relaxation in Porous GaN Layers
,”
Appl. Phys. Lett.
,
76
, pp.
1113
1115
.10.1063/1.125955
23.
Zangooie
,
S.
,
Woollam
,
J. A.
, and
Arwin
,
H.
,
2000
, “
Self-Organization in Porous 6H-SiC
,”
J. Mater. Res.
,
15
, pp.
1860
1863
.10.1557/JMR.2000.0268
24.
Inoki
,
C. K.
,
Kuan
,
T. S.
,
Lee
,
C. D.
,
Sagar
,
A.
,
Feenstra
,
R. M.
,
Koleske
,
D. D.
,
Diaz
,
D. J.
,
Bohn
,
P. W.
, and
Adesida
,
I.
,
2003
, “
Growth of GaN on Porous SiC and GaN Substrates
,”
J. Electron. Mater.
,
32
, pp.
855
860
.10.1007/s11664-003-0200-5
25.
Lee
,
C. D.
,
Ramachandran
,
V.
,
Sagar
,
A.
,
Feenstra
,
R. M.
,
Greve
,
D. W.
,
Sarney
,
W. L.
,
Salamanca-Riba
,
L.
,
Look
,
D. C.
,
Bai
,
S.
,
Choyke
,
W. J.
, and
Devaty
,
R. P.
,
2001
, “
Properties of GaN Epitaxial Layers Grown on 6H-SiC(0001) by Plasma-Assisted Molecular Beam Epitaxy
,”
J. Electron. Mater.
,
30
, pp.
162
169
.10.1007/s11664-001-0010-6
26.
Waltereit
,
P.
,
Lim
,
S.-H.
,
McLaurin
,
M.
, and
Speck
,
J. S.
,
2002
, “
Hetero-Epitaxial Growth of GaN on 6H-SiC (0001) by Plasma-Assisted Molecular Beam Epitaxy
,”
Phys. Status Solidi
,
194
(
2
), pp.
524
527
.10.1002/1521-396X(200212)194:2<524::AID-PSSA524>3.0.CO;2-N
27.
Ghosh
,
B. K.
,
Tanikawa
,
T.
,
Hashimoto
,
A.
,
Yamamoto
,
A.
, and
Ito
,
Y.
,
2003
, “
Reduced-Stress GaN Epitaxial Layers Grown on Si(1 1 1) by Using a Porous GaN Interlayer Converted From GaAs
,”
J. Cryst. Growth
,
249
, pp.
422
428
.10.1016/S0022-0248(02)02223-6
28.
Barnes
,
T. M.
,
Leaf
,
J.
,
Fry
,
C.
, and
Wolden
,
C. A.
,
2005
, “
Room Temperature Chemical Vapor Deposition of c-Axis ZnO
,”
J. Cryst. Growth
,
274
, pp.
412
417
.10.1016/j.jcrysgro.2004.10.015
29.
Fabbri
,
E.
,
Pergolesi
,
D.
, and
Traversa
,
E.
,
2010
, “
Ionic Conductivity in Oxide Hetero-Structures: The Role of Interfaces
,”
Sci. Technol. Adv. Mater.
,
11
, p.
054503
.10.1088/1468-6996/11/5/054503
30.
Sagar
,
A.
,
Feenstra
,
R. M.
, and
Freitas
,
J.A.
, Jr.
,
2007
, “
Growth of GaN on Porous SiC by Molecular Beam Epitaxy
,”
Porous SiC and GaN: Epitaxy, Catalysis, Biotechnology Applications
,
R. M.
Feenstra
and
C. E. C.
Wood
, eds.,
Wiley
,
West Sussex, U.K
.
31.
Frayssinet
,
E.
,
Beaumont
,
B.
,
Faurie
,
J. P.
,
Gibart
,
P.
,
Makkai
,
Z.
,
Perz
,
B.
,
Lefebre
,
P.
, and
Valvin
,
P.
,
2002
, “
Micro Epitaxial Lateral Overgrowth of GaN/Sapphire by Metal Organic Vapor Phase Epitaxy
,”
MRS Internet J. Nitride Semicond. Res.
,
7
, 8.
32.
Sagar
,
A.
,
Lee
,
C. D.
,
Feenstra
,
R. M.
,
Inoki
,
C. K.
, and
Kuan
,
T. S.
,
2003
, “
Plasma-Assisted Molecular Beam Epitaxy of GaN on Porous SiC Substrates With Varying Porosity
,”
J. Vac. Sci. Technol. B
,
21
, pp.
1812
1817
.10.1116/1.1589513
33.
Hallin
,
C.
,
Bakin
,
A. S.
,
Owman
,
F.
,
Martenssen
,
P.
,
Kordina
,
O.
, and
Jansen
,
E.
,
1996
, “
Study of the Hydrogen Etching of SiC Substrates
,”
Proceedings of SiC and Related Materials, Inst. Phys. Conf.
, Ser. No 142,
Kyoto Japan
, IOP, Bristol, pp.
1456
1460
.
34.
Chu
,
T. L.
, and
Campbell
,
R. B.
,
1965
, “
Chemical Etching of Silicon Carbide With Hydrogen
,”
J. Electrochem. Soc.
,
112
, pp.
955
956
.10.1149/1.2423742
35.
Ramachandran
,
V.
,
Brady
,
M. F.
,
Smith
,
A. R.
,
Feenstra
,
R. M.
, and
Greve
,
D. W.
,
1998
, “
Preparation of Atomically Flat Surfaces on Silicon Carbide Using Hydrogen Etching
,”
J. Electron. Mater.
,
27
, pp.
308
312
.10.1007/s11664-998-0406-7
36.
Sagar
,
A.
,
Lee
,
C. D.
,
Feenstra
,
R. M.
,
Inoki
,
C. K.
, and
Kuan
,
T. S.
,
2002
, “
Morphology and Effects of Hydrogen Etching of Porous SiC
,”
J. Appl. Phys.
,
92
, pp.
4070
4074
.10.1063/1.1501749
37.
Suhir
,
E.
,
2011
, “
Stresses in Bi-Material GaN Assemblies
,”
J. Appl. Phys.
,
110
, p.
074506
.10.1063/1.3638702
38.
Suhir
,
E.
,
2000
, “
Predicted Stresses in a Circular Substrate/Thin-Film System Subjected to the Change in Temperature
,”
J. Appl. Phys.
,
88
(
5
), pp.
2363
2370
.10.1063/1.1286096
39.
Suhir
,
E.
,
1991
, “
Approximate Evaluation of the Elastic Interfacial Stresses in Thin Films With Application to High-Tc Superconducting Ceramics
,”
Int. J. Solids Struct.
,
27
(
8
), pp.
1025
1034
.10.1016/0020-7683(91)90098-Z
40.
Mishkevich
,
V.
, and
Suhir
,
E.
,
1993
Simplified Approach to the Evaluation of Thermally Induced Stresses in Bi-Material Structures,
Structural Analysis in Microelectronics and Fiber Optics
,
E.
Suhir
, ed.,
ASME Press
,
New York
.
41.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
56
(
3
), pp.
595
600
.10.1115/1.3176133
42.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
43.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
44.
Sneddon
,
I. N.
,
1956
,
Special Functions of Mathematical Physics and Chemistry
,
Oliver and Boyd
,
Edinburgh, U.K
.
45.
Janke
,
E.
,
Emde
,
F.
, and
Lösch
,
F.
,
1960
,
Tafeln Höherer Functionen
,
B. G.
Tenbrer
, ed.,
Verlagsgesellschaft
,
Stuttgart, Germany
, (in German).
46.
Suhir
,
E.
,
1988
, “
An Approximate Analysis of Stresses in Multilayer Elastic Thin Films
,”
ASME J. Appl. Mech.
,
55
(
3
), pp.
143
148
.10.1115/1.3173620
You do not currently have access to this content.