Fragmentation mechanisms of peptide assemblies under shock deformation are studied using molecular dynamics simulations and are found to depend strongly on the relative magnitude of the shock front radius to the fibril length and the ratio of the impact energy to the fibril cohesive energy. The competition between size scaling of curvature and impact energy leads to a mechanism change at a critical impact velocity, developing a stark contrast in the size scaling of fragmentation at low and high strain rates. We show that the fragmentation mechanisms can be classified on the basis of the length and time scales of deformation and relaxation to provide new insight into experimental observations.
Issue Section:
Research Papers
References
1.
Keten
, S.
, and Buehler
, M. J.
, 2008
, “Geometric Confinement Governs the Rupture Strength of H-Bond Assemblies at a Critical Length Scale
,” Nano Lett.
, 8
(2
), pp. 743
–748
.10.1021/nl07316702.
Keten
, S.
, Xu
, Z.
, Ihle
, B.
, and Buehler
, M. J.
, 2010
, “Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Beta-Sheet Crystals in Silk
,” Nature Mater.
, 9
, pp. 359
–367
.10.1038/nmat27043.
Ruiz
, L.
, and Keten
, S.
, 2011
, “Atomistic Modeling and Mechanics of Self-Assembled Organic Nanotubes
,” Int. J. Appl. Mech.
, 3
(4
), pp. 1
–18
.10.1142/S17588251110011844.
Paparcone
, R.
, Keten
, S.
, and Buehler
, M. J.
, 2010
, “Atomistic Simulation of Nanomechanical Properties of Alzheimer's Aβ(1-40) Amyloid Fibrils Under Compressive and Tensile Loading
,” J. Biomech.
, 43
(6
), pp. 1196
–1201
.10.1016/j.jbiomech.2009.11.0265.
Li
, D.
, and Kaner
, R. B.
, “Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred
,” J. Am. Chem. Soc.
, 128
(3
), pp. 968
–975
.10.1021/ja056609n6.
Carnall
, J. M. A.
, Waudby
, C. A.
, Belenguer
, A. M.
, Stuart
, M. C. A.
, Peyralans
, J. J. P.
, and Otto
, S.
, 2010
, “Mechanosensitive Self-Replication Driven by Self-Organization
,” Science
, 327
(5972
), pp. 1502
–1506
.10.1126/science.11827677.
Hung
, A. M.
, and Stupp
, S. I.
, 2009
, “Understanding Factors Affecting Alignment of Self-Assembling Nanofibers Patterned by Sonication-Assisted Solution Embossing
,” Langmuir
, 25
(12
), pp. 7084
–7089
.10.1021/la900149v8.
Chatani
, E.
, Lee
, Y. H.
, Yagi
, H.
, Yoshimura
, Y.
, Naiki
, H.
, and Goto
, Y.
, 2009
, “Ultrasonication-Dependent Production and Breakdown Lead to Minimum-Sized Amyloid Fibrils
,” Proc. Natl. Acad. Sci. U.S.A.
, 106
(27
), pp. 11119
–11124
.10.1073/pnas.09014221069.
Ohhashi
, Y.
, Kihara
, M.
, Naiki
, H.
, and Goto
, Y.
, 2005
, “Ultrasonication-Induced Amyloid Fibril Formation of β2-Microglobulin
,” J. Biol. Chem.
, 280
(38
), pp. 32843
–32848
.10.1074/jbc.M50650120010.
Wang
, X. Q.
, Kluge
, J. A.
, Leisk
, G. G.
, and Kaplan
, D. L.
, 2008
, “Sonication-Induced Gelation of Silk Fibroin for Cell Encapsulation
,” Biomaterials
, 29
(8
), pp. 1054
–1064
.10.1016/j.biomaterials.2007.11.00311.
Knowles
, T. P. J.
, Waudby
, C. A.
, Devlin
, G. L.
, Cohen
, S. I. A.
, Aguzzi
, A.
, Vendruscolo
, M.
, Terentjev
, E. M.
, Welland
, M. E.
, and Dobson
, C. M.
, 2009
, “An Analytical Solution to the Kinetics of Breakable Filament Assembly
,” Science
, 326
(5959
), pp. 1533
–1537
.10.1126/science.117825012.
Polat
, B. E.
, Hart
, D.
, Langer
, R.
, and Blankschtein
, D.
, 2011
, “Ultrasound-Mediated Transdermal Drug Delivery: Mechanisms, Scope, and Emerging Trends
,” J. Controlled Release
, 152
(3
), pp. 330
–348
.10.1016/j.jconrel.2011.01.00613.
Vedadi
, M.
, Choubey
, A.
, Nomura
, K.
, Kalia
, R. K.
, Nakano
, A.
, Vashishta
, P.
, and van Duin
, A. C. T.
, 2010
, “Structure and Dynamics of Shock-Induced Nanobubble Collapse in Water
,” Phys. Rev. Lett.
, 105
(1
), p. 014503
.10.1103/PhysRevLett.105.01450314.
Yang
, N.-S.
, Burkholder
, J.
, Roberts
, B.
, Martinell
, B.
, and McCabe
, D.
, 1990
, “In Vivo and In Vitro Gene Transfer to Mammalian Somatic Cells by Particle Bombardment
,” Proc. Natl. Acad. Sci.
, 87
(24
), pp. 9568
–9572
.10.1073/pnas.87.24.956815.
Lucas
, A.
, Zakri
, C.
, Maugey
, M.
, Pasquali
, M.
, van der Schoot
, P.
, and Poulin
, P.
, 2009
, “Kinetics of Nanotube and Microfiber Scission Under Sonication
,” J. Phys. Chem. C
, 113
(48
), pp. 20599
–20605
.10.1021/jp906296y16.
Kodama
, T.
, Hamblin
, M. R.
, and Doukas
, A. G.
, 2000
, “Cytoplasmic Molecular Delivery With Shock Waves: Importance of Impulse
,” Biophys. J.
, 79
(4
), pp. 1821
–1832
.10.1016/S0006-3495(00)76432-017.
Hennrich
, F.
, Krupke
, R.
, Arnold
, K.
, Stutz
, J. A. R.
, Lebedkin
, S.
, Koch
, T.
, Schimmel
, T.
, and Kappes
, M. M.
, 2007
, “The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes
,” J. Phys. Chem. B
, 111
(8
), pp. 1932
–1937
.10.1021/jp065262n18.
Chew
, H. B.
, Moon
, M. W.
, Lee
, K. R.
, and Kim
, K. S.
, 2011
, “Compressive Dynamic Scission of Carbon Nanotubes Under Sonication: Fracture by Atomic Ejection
,” Proc. R. Soc. London, Ser. A
, 467
(2129
), pp. 1270
–1289
.10.1098/rspa.2010.049519.
Hickenboth
, C. R.
, Moore
, J. S.
, White
, S. R.
, Sottos
, N. R.
, Baudry
, J.
, and Wilson
, S. R.
, 2007
, “Biasing Reaction Pathways With Mechanical Force
,” Nature
, 446
(7134
), pp. 423
–427
.10.1038/nature0568120.
Caruso
, M. M.
, Davis
, D. A.
, Shen
, Q.
, Odom
, S. A.
, Sottos
, N. R.
, White
, S. R.
, and Moore
, J. S.
, 2009
, “Mechanically-Induced Chemical Changes in Polymeric Materials
,” Chem. Rev.
, 109
(11
), pp. 5755
–5798
.10.1021/cr900135321.
Castro
, C. E.
, Dong
, J. J.
, Boyce
, M. C.
, Lindquist
, S.
, and Lang
, M. J.
, 2011
, “Physical Properties of Polymorphic Yeast Prion Amyloid Fibers
,” Biophys. J.
, 101
(2
), pp. 439
–448
.10.1016/j.bpj.2011.06.01622.
Guerin
, G.
, Wang
, H.
, Manners
, I.
, and Winnik
, M. A.
, 2008
, “Fragmentation of Fiberlike Structures: Sonication Studies of Cylindrical Block Copolymer Micelles and Behavioral Comparisons to Biological Fibrils
,” J. Am. Chem. Soc.
, 130
(44
), pp. 14763
–14771
.10.1021/ja805262v23.
Keten
, S.
, Rodriguez Alvarado
, J.
, Müftü
, S.
, and Buehler
, M.
, 2009
, “Nanomechanical Characterization of the Triple β-Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus
,” Cell. Mol. Bioeng.
, 2
(1
), pp. 66
–74
.10.1007/s12195-009-0047-924.
Villermaux
, E.
, and Bossa
, B.
, 2009
, “Single-Drop Fragmentation Determines Size Distribution of Raindrops
,” Nature Phys.
, 5
(9
), pp. 697
–702
.10.1038/nphys134025.
Gladden
, J. R.
, Handzy
, N. Z.
, Belmonte
, A.
, and Villermaux
, E.
, 2005
, “Dynamic Buckling and Fragmentation in Brittle Rods
,” Phys. Rev. Lett.
, 94
(3
), p. 035503
.10.1103/PhysRevLett.94.03550326.
Zhang
, H.
, and Ravi-Chandar
, K.
, 2009
, “Dynamic Fragmentation of Ductile Materials
,” J. Phys. D: Appl. Phys.
, 42
(21
), p. 214010
.10.1088/0022-3727/42/21/21401027.
Audoly
, B.
, and Neukirch
, S.
, 2005
, “Fragmentation of Rods by Cascading Cracks: Why Spaghetti Does Not Break in Half
,” Phys. Rev. Lett.
, 95
(9
), p. 095505
.10.1103/PhysRevLett.95.09550528.
Cranford
, S. W.
, Tarakanova
, A.
, Pugno
, N. M.
, and Buehler
, M. J.
, 2012
, “Nonlinear Material Behaviour of Spider Silk Yields Robust Webs
,” Nature
, 482
(7383
), pp. 72
–76
.10.1038/nature1073929.
Tozzini
, V.
, 2005
, “Coarse-Grained Models for Proteins
,” Curr. Opin. Struct. Biol.
, 15
(2
), pp. 144
–150
.10.1016/j.sbi.2005.02.00530.
Voth
, G. A.
, 2009
, Coarse-Graining of Condensed Phase and Biomolecular Systems
, CRC
, Boca Raton
, FL, Chap. xviii.31.
Reith
, D.
, Putz
, M.
, and Muller-Plathe
, F.
, 2003
, “Deriving Effective Mesoscale Potentials From Atomistic Simulations
,” J. Comput. Chem.
, 24
(13
), pp. 1624
–1636
.10.1002/jcc.1030732.
Arkhipov
, A.
, Freddolino
, P. L.
, Imada
, K.
, Namba
, K.
, and Schulten
, K.
, 2006
, “Coarse-Grained Molecular Dynamics Simulations of a Rotating Bacterial Flagellum
,” Biophys. J.
, 91
(12
), pp. 4589
–4597
.10.1529/biophysj.106.09344333.
Atilgan
, A. R.
, Durell
, S. R.
, Jernigan
, R. L.
, Demirel
, M. C.
, Keskin
, O.
, and Bahar
, I.
, 2001
, “Anisotropy of Fluctuation Dynamics of Proteins With an Elastic Network Model
,” Biophys. J.
, 80
(1
), pp. 505
–515
.10.1016/S0006-3495(01)76033-X34.
Hourani
, R.
, Zhang
, C.
, van der Weegen
, R.
, Ruiz
, L.
, Li
, C.
, Keten
, S.
, Helms
, B. A.
, and Xu
, T.
, 2011
, “Processable Cyclic Peptide Nanotubes With Tunable Interiors
,” J. Am. Chem. Soc.
, 133
, pp. 15296
–15299
.10.1021/ja206308235.
Go
, N.
, and Abe
, H.
, 1981
, “Non-Interacting Local-Structure Model of Folding and Unfolding Transition in Globular-Proteins. 1. Formulation
,” Biopolymers
, 20
(5
), pp. 991
–1011
.10.1002/bip.1981.36020051136.
Plimpton
, S.
, 1995
, “Fast Parallel Algorithms for Short-Range Molecular Dynamics
,” J. Comput. Phys.
, 117
(1
), pp. 1
–19
.10.1006/jcph.1995.103937.
Hartmann
, M. A.
, and Fratzl
, P.
, 2009
, “Sacrificial Ionic Bonds Need to Be Randomly Distributed to Provide Shear Deformability
,” Nano Lett.
, 9
(10
), pp. 3603
–3607
.10.1021/nl901816s38.
Smith
, J. F.
, Knowles
, T. P. J.
, Dobson
, C. M.
, MacPhee
, C. E.
, and Welland
, M. E.
, 2006
, “Characterization of the Nanoscale Properties of Individual Amyloid Fibrils
,” Proc. Natl. Acad. Sci. U.S.A.
, 103
(43
), pp. 15806
–15811
.10.1073/pnas.060403510339.
Sachse
, C.
, Grigorieff
, N.
, and Fandrich
, M.
, 2010
, “Nanoscale Flexibility Parameters of Alzheimer Amyloid Fibrils Determined by Electron Cryo-Microscopy
,” Angew. Chem., Int. Ed.
, 49
(7
), pp. 1321
–1323
.10.1002/anie.20090478140.
Ruiz
, L.
, and Keten
, S.
, “Multi-Scale Modeling of Elasticity and Fracture in Organic Nanotubes
,” J. Eng. Mech.
, (in press).10.1061/(ASCE)EM.1943-7889.000047141.
Tsemekhman
, K.
, Goldschmidt
, L.
, Eisenberg
, D.
, and Baker
, D.
, 2007
, “Cooperative Hydrogen Bonding in Amyloid Formation
,” Protein Sci.
, 16
(4
), pp. 761
–764
.10.1110/ps.06260960742.
Humphrey
, W.
, Dalke
, A.
, and Schulten
, K.
, 1996
, “VMD: Visual Molecular Dynamics
,” J. Mol. Graphics
, 14
(1
), pp. 33
–38
.10.1016/0263-7855(96)00018-543.
Faeth
, G. M.
, Hsiang
, L. P.
, and Wu
, P. K.
, 1995
, “Structure and Breakup Properties of Sprays
,” Int. J. Multiphase Flow
, 21
, pp. 99
–127
.10.1016/0301-9322(95)00059-744.
Joseph
, D. D.
, Belanger
, J.
, and Beavers
, G. S.
, 1999
, “Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream
,” Int. J. Multiphase Flow
, 25
(6–7
), pp. 1263
–1303
.10.1016/S0301-9322(99)00043-945.
Pilch
, M.
, and Erdman
, C. A.
, 1987
, “Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid-Drop
,” Int. J. Multiphase Flow
, 13
(6
), pp. 741
–757
.10.1016/0301-9322(87)90063-246.
Carpinteri
, A.
, and Pugno
, N.
, 2002
, “A Fractal Comminution Approach to Evaluate the Drilling Energy Dissipation
,” Int. J. Numer. Analyt. Meth. Geomech.
, 26
(5
), pp. 499
–513
.10.1002/nag.20947.
LeDuc
, P.
, Haber
, C.
, Bao
, G.
, and Wirtz
, D.
, 1999
, “Dynamics of Individual Flexible Polymers in a Shear Flow
,” Nature
, 399
(6736
), pp. 564
–566
.10.1038/21148Copyright © 2013 by ASME
You do not currently have access to this content.