A highly resolved computation of the flow past a sphere at Reynolds number Re = 3700 using a finite element method (FEM)-based residual-based variational multiscale (RBVMS) formulation is performed. Both uniform and turbulent inflow conditions are considered with the uniform flow case validated against a previous direct numerical simulation (DNS) study. We find that, as a result of adding free-stream turbulence of moderate intensity, the drag force on the sphere is increased, the length of the recirculation bubble is reduced dramatically, and the near-wake turbulence is significantly more energetic than in case of uniform inflow. In the case of uniform inflow, we find that the solution exhibits low temporal frequency modes, which necessitate long-time simulations to obtain high-fidelity statistical averages. Subjecting the sphere to turbulent inflow removes the low-frequency modes from the solution and enables shorter-time simulations to achieve converged flow statistics.

References

1.
de Stadler
,
M. B.
,
Sarkar
,
S.
, and
Brucker
,
K. A.
,
2010
, “
Effect of the Prandtl Number on a Stratified Turbulent Wake
,”
Phys. Fluids
,
22
(
9
), p.
095102
.10.1063/1.3478841
2.
Wu
,
J.-S.
, and
Faeth
,
G.
,
1994
, “
Sphere Wakes at Moderate Reynolds Numbers in a Turbulent Environment
,”
AIAA J.
,
32
(
3
), pp.
535
541
.10.2514/3.12018
3.
Wu
,
J.-S.
, and
Faeth
,
G.
,
1995
, “
Effect of Ambient Turbulence Intensity on Sphere Wakes at Intermediate Reynolds Numbers
,”
AIAA J.
,
33
(
1
), pp.
171
173
.10.2514/3.12353
4.
Bagchi
,
P.
, and
Balachandar
,
S.
,
2003
, “
Effect of Turbulence on the Drag and Lift of a Particle
,”
Phys. Fluids
,
15
(
11
), pp.
3496
3513
.10.1063/1.1616031
5.
Bagchi
,
P.
, and
Balachandar
,
S.
,
2004
, “
Response of the Wake of an Isolated Particle to an Isotropic Turbulent Flow
,”
J. Fluid Mech.
,
518
, pp.
95
123
.10.1017/S0022112004000989
6.
Legendre
,
D.
,
Merle
,
A.
, and
Magnaudet
,
J.
,
2006
, “
Wake of a Spherical Bubble or a Solid Sphere Set Fixed in a Turbulent Environment
,”
Phys. Fluids
,
18
(
4
), p.
048102
.10.1063/1.2191885
7.
Amoura
,
Z.
,
Roig
,
V.
,
Risso
,
F.
, and
Billet
,
A.-M.
,
2010
, “
Attenuation of the Wake of a Sphere in an Intense Incident Turbulence With Large Length Scales
,”
Phys. Fluids
,
22
(5), p.
055105
.10.1063/1.3425628
8.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Scovazzi
,
G.
,
2007
, “
Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
1–4
), pp.
173
201
.10.1016/j.cma.2007.07.016
9.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
,
Computational Fluid–Structure Interaction: Methods and Applications
,
Wiley
, Chichester, UK.
10.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
11.
Tezduyar
,
T. E.
,
Mittal
,
S.
,
Ray
,
S. E.
, and
Shih
,
R.
,
1992
, “
Incompressible Flow Computations With Stabilized Bilinear and Linear Equal-Order-Interpolation Velocity-Pressure Elements
,”
Comput. Methods Appl. Mech. Eng.
,
95
(
2
), pp.
221
242
.10.1016/0045-7825(92)90141-6
12.
Tezduyar
,
T. E.
,
2003
, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Numer. Methods Fluids
,
43
(
5
), pp.
555
575
.10.1002/fld.505
13.
Hughes
,
T. J. R.
,
Mazzei
,
L.
, and
Jansen
,
K. E.
,
2000
, “
Large-Eddy Simulation and the Variational Multiscale Method
,”
Comput. Visualization Sci.
,
3
(
1–2
), pp.
47
59
.10.1007/s007910050051
14.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Hughes
,
T. J. R.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid–Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
(
1
), pp.
3
37
.10.1007/s00466-008-0315-x
15.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian–Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.10.1016/0045-7825(81)90049-9
16.
Takizawa
,
K.
,
Bazilevs
,
Y.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling
,”
Arch. Comput. Meth. Eng.
,
19
(
2
), pp.
171
225
.10.1007/s11831-012-9071-3
17.
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2011
, “
Multiscale Space–Time Fluid–Structure Interaction Techniques
,”
Comput. Mech.
,
48
(
3
), pp.
247
267
.10.1007/s00466-011-0571-z
18.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
ALE-VMS and ST-VMS Methods for Computer Modeling of Wind-Turbine Rotor Aerodynamics and Fluid–Structure Interaction
,”
Math. Models Methods Appl. Sci.
,
22
(
Supp02
), p.
1230002
.10.1142/S0218202512300025
19.
Takizawa
,
K.
,
Henicke
,
B.
,
Puntel
,
A.
,
Kostov
,
N.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time Techniques for Computational Aerodynamics Modeling of Flapping Wings of an Actual Locust
,”
Comput. Mech.
,
50
(
6
), pp.
743
760
.10.1007/s00466-012-0759-x
20.
Takizawa
,
K.
,
Kostov
,
N.
,
Puntel
,
A.
,
Henicke
,
B.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time Computational Analysis of Bio-Inspired Flapping-Wing Aerodynamics of a Micro Aerial Vehicle
,”
Comput. Mech.
,
50
(
6
), pp.
761
778
.10.1007/s00466-012-0758-y
21.
Takizawa
,
K.
,
Montes
,
D.
,
McIntyre
,
S.
, and
Tezduyar
,
T. E.
,
2013
, “
Space–Time VMS Methods for Modeling of Incompressible Flows at High Reynolds Numbers
,”
Math. Models Methods Appl. Sci.
,
23
(2), pp.
223
248
.10.1142/S0218202513400022
22.
Takizawa
,
K.
,
Schjodt
,
K.
,
Puntel
,
A.
,
Kostov
,
N.
, and
Tezduyar
,
T. E.
,
2013
, “
Patient-Specific Computational Analysis of the Influence of a Stent on the Unsteady Flow in Cerebral Aneurysms
,”
Comput. Mech.
,
51
(
6
), pp.
1061
1073
.10.1007/s00466-012-0790-y
23.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
McIntyre
,
S.
,
Kostov
,
N.
,
Kolesar
,
R.
, and
Habluetzel
,
C.
,
2014
, “
Space–Time VMS Computation of Wind-Turbine Rotor and Tower Aerodynamics
,”
Comput. Mech.
,
53
(
1
), pp.
1
15
.10.1007/s00466-013-0888-x
24.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Buscher
,
A.
, and
Asada
,
S.
,
2014
, “
Space–Time Interface-Tracking With Topology Change (ST-TC)
,”
Comput. Mech.
,
54
(
4
), pp.
955
971
.10.1007/s00466-013-0935-7
25.
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Kostov
,
N.
,
2014
, “
Sequentially-Coupled Space–Time FSI Analysis of Bio-Inspired Flapping-Wing Aerodynamics of an MAV
,”
Comput. Mech.
,
54
(
2
), pp.
213
233
.10.1007/s00466-014-0980-x
26.
Takizawa
,
K.
,
Bazilevs
,
Y.
,
Tezduyar
,
T. E.
,
Long
,
C. C.
,
Marsden
,
A. L.
, and
Schjodt
,
K.
,
2014
, “
ST and ALE-VMS Methods for Patient-Specific Cardiovascular Fluid Mechanics Modeling
,”
Math. Models Methods Appl. Sci.
,
24
(12), pp.
2437
2486
.10.1142/S0218202514500250
27.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Buscher
,
A.
, and
Asada
,
S.
,
2014
, “
Space–Time Fluid Mechanics Computation of Heart Valve Models
,”
Comput. Mech.
,
54
(
4
), pp.
973
986
.10.1007/s00466-014-1046-9
28.
Suito
,
H.
,
Takizawa
,
K.
,
Huynh
,
V. Q. H.
,
Sze
,
D.
, and
Ueda
,
T.
,
2014
, “
FSI Analysis of the Blood Flow and Geometrical Characteristics in the Thoracic Aorta
,”
Comput. Mech.
,
54
(
4
), pp.
1035
1045
.10.1007/s00466-014-1017-1
29.
Takizawa
,
K
.,
2014
, “
Computational Engineering Analysis With the New-Generation Space–Time Methods
,”
Comput. Mech.
,
54
(
2
), pp.
193
211
.10.1007/s00466-014-0999-z
30.
Rodriguez
,
I.
,
Borell
,
R.
,
Lehmkuhl
,
O.
,
Perez Segarra
,
C. D.
, and
Oliva
,
A.
,
2011
, “
Direct Numerical Simulation of the Flow Over a Sphere at Re = 3700
,”
J. Fluid Mech.
,
679
, pp.
263
287
.10.1017/jfm.2011.136
31.
Achenbach
,
E
.,
1974
, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
,
62
(
2
), pp.
209
221
.10.1017/S0022112074000644
32.
Kim
,
H. J.
, and
Durbin
,
P. A.
,
1988
, “
Observations of the Frequencies in a Sphere Wake and of Drag Increase by Acoustic Excitation
,”
Phys. Fluids
,
31
(
11
), pp.
3260
3265
.10.1063/1.866937
33.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1990
, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
,
112
(
4
), pp.
386
392
.10.1115/1.2909415
34.
Lehmkuhl
,
O.
,
Rodríguez
,
I.
,
Borrell
,
R.
, and
Oliva
,
A.
,
2013
, “
Low-Frequency Unsteadiness in the Vortex Formation Region of a Circular Cylinder
,”
Phys. Fluids
,
25
(
8
), p.
085109
.10.1063/1.4818641
35.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics
,”
Comput. Fluids
,
36
(
1
), pp.
12
26
.10.1016/j.compfluid.2005.07.012
36.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V. M.
, and
Hughes
,
T. J. R.
,
2010
, “
Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows With Weakly Enforced Boundary Conditions on Unstretched Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
13–16
), pp.
780
790
.10.1016/j.cma.2008.11.020
37.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.10.1016/j.cma.2004.10.008
38.
Jansen
,
K.
,
Whiting
,
C.
, and
Hulbert
,
G.
,
2000
, “
A Generalized-α Method for Integrating the Filtered Navier-Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3
), pp.
305
319
.10.1016/S0045-7825(00)00203-6
39.
Saad
,
Y.
, and
Schultz
,
M.
,
1986
, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
856
869
.10.1137/0907058
40.
Kalro
,
V.
, and
Tezduyar
,
T.
,
1998
, “
3D Computation of Unsteady Flow Past a Sphere With a Parallel Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
151
(1–2), pp.
267
276
.10.1016/S0045-7825(97)00120-5
41.
Tomboulides
,
A. G.
, and
Orszag
,
S. A.
,
2000
, “
Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere
,”
J. Fluid Mech.
,
416
(
1
), pp.
45
73
.10.1017/S0022112000008880
42.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
, 7th ed.,
Springer-Verlag
,
Berlin, Germany
.
43.
Seidl
,
V.
,
Muzaferija
,
S.
, and
Peric
,
M.
,
1998
, “
Parallel DNS With Local Grid Refinement
,”
Appl. Sci. Res.
,
59
, pp.
379
394
.10.1023/A:1001174913609
44.
Basak
,
S.
, and
Sarkar
,
S.
,
2006
, “
Dynamics of a Stratified Shear Layer With Horizontal Shear
,”
J. Fluid Mech.
,
568
, pp.
19
54
.10.1017/S0022112006001686
45.
Brucker
,
K. A.
, and
Sarkar
,
S.
,
2010
, “
A Comparative Study of Self-Propelled and Towed Wakes in a Stratified Fluid
,”
J. Fluid Mech.
,
652
, pp.
373
404
.10.1017/S0022112010000236
46.
Rogallo
,
R. S.
,
1981
,
Numerical Experiments in Homogeneous Turbulence, NASA Ames Research Center, Mountain View, CA
, Technical Report No. 81315.
47.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
MIT
,
Cambridge, MA
.
48.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
49.
Eames
,
I.
,
Johnson
,
P.
,
Roig
,
V.
, and
Risso
,
F.
,
2011
, “
Effect of Turbulence on the Downstream Velocity Deficit of a Rigid Sphere
,”
Phys. Fluids
,
23
(9), p.
095103
.10.1063/1.3632102
You do not currently have access to this content.