Random vibrations of the damped Bernoulli–Euler beam with two supports and subjected to a stationary random excitation are studied. The supports are symmetrically placed with respect to the middle cross-section of the beam. We investigate the mean square displacement of the beam with the goal of determining the optimum location of supports in order to minimize the maximum probabilistic response. This study falls in the category of hybrid optimization and anti-optimization, since we are looking for the worst maximum response, constituting the anti-optimization process; subsequently, we are looking for optimization of the structure to make the maximum response minimal by properly the spacing supports.

References

1.
Bolotin
,
V. V.
,
1984
,
Random Vibrations of Elastic Systems
,
Martinus Nijhoff
,
The Hague
.
2.
Crandall
,
S. H.
,
1979
, “
Random Vibrations of One- and Two-Dimensional Structures
,”
Developments in Statistics
,
P. R.
Krishnayah
, ed.,
Academic
,
New York
, pp.
1
82
.
3.
Elishakoff
,
I.
,
1999
,
Probabilistic Theory of Structures
, 2nd ed.,
Dover
,
Mineola, NY
.
4.
Kree
,
P.
, and
Soize
,
C.
,
1983
,
Mécanique Aléatoire
,
Dunod
,
Paris (in French)
.
5.
Wedig
,
W.
,
1981
, “
Stationaere Zufallschwingungen von Balken—Eine Neue Methode zur Kovarianzanalyse
,”
Z. Angew. Math. Mech.
,
60
, pp.
T89
T91
(in German).
6.
Yang
,
C. Y.
,
1985
,
Random Vibrations of Structures
,
Wiley-Interscience
,
New York
.
7.
Niordson
,
F. I.
, and
Simmonds
,
J. G.
,
1975
, “
An Improved Stodola Method for Computing Close Eigenvalues
,”
Foundations of Deformable Media
,
Galerkin 100th birthday volume
,
Nauka, Moscow
, pp.
413
419
(in Russian).
8.
Elishakoff
,
I.
, and
Ohsaki
,
M.
,
2010
,
Optimization and Anti-Optimization of Structures Under Uncertainty
,
Imperial College Press
,
London
.
9.
Elishakoff
,
I.
,
1990
, “
An Idea of the Uncertainty Triangle
,”
Shock Vib. Dig.
,
22
(
10
), p. 1.
10.
Adali
,
S.
,
Lena
,
F.
,
Devaut
,
G.
, and
Chiaruttini
,
V.
,
2002
, “
Optimization of Laminated Composites Under Buckling Uncertainties Via Anti-Optimization
,”
Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Atlanta, GA, September 4–6,
AIAA
Paper No. 2002-5417.10.2514/6.2002-5417
11.
Bu
,
J. L.
,
Jiang
,
Z. G.
, and
Jiao
,
S. H.
,
2012
, “
Study of Anti-Optimization Method to Identify the Parameters of the Frequency Correlation Viscoelastic Model for Rubber
,”
Adv. Mater. Res.
,
415-417
, pp.
232
236
.10.4028/www.scientific.net/AMR.415-417.232
12.
Catallo
,
L.
,
2004
,”
Genetic Anti-Optimization for Reliability Structural Assessment of Precast Concrete Structures
,”
Comput. Struct.
,
82
(
13–14
), pp.
1053
1065
.10.1016/j.compstruc.2004.03.018
13.
Elishakoff
,
I.
,
Haftka
,
R. T.
, and
Fang
,
J.
,
1994
, “
Structural Design Under Bounded Uncertainty—Optimization With Anti-Optimization
,”
Comput. Struct.
,
53
(
6
), pp.
1401
1405
.10.1016/0045-7949(94)90405-7
14.
Elishakoff
,
I.
,
Kriegesmann
,
B.
,
Rolfes
,
R.
,
Huenne
,
C.
, and
Kling
,
A.
,
2012
, “
Optimization and Anti-Optimization of Buckling Load for Composite Cylindrical Shells Under Uncertainties
,”
AIAA J.
,
50
(
7
), pp.
1513
1534
.10.2514/1.J051300
15.
de Faria
,
R.
,
2002
, “
Buckling Optimization and Anti-Optimization of Composite Plates: Uncertain Load Combinations
,”
Int.l J. Numer. Methods Eng.
,
53
, pp.
719
732
.10.1002/nme.309
16.
Gangadharan
,
S.
,
Nikolaidis
,
E.
,
Lee
,
K.
,
Haftka
,
R. T.
, and
Burdisso
,
R.
,
1999
, “
Anti-Optimization for Comparison of Alternative Structural Models and Damage Detection
,”
AIAA J.
,
37
(
7
), pp.
857
864
.10.2514/2.7534
17.
Hlaváček
,
I.
,
Chleboun
,
J.
, and
Babuška
,
I.
,
2004
,
Uncertain Input Data Problems and the Worst Scenario Method
,
Elsevier
,
Amsterdam
.
18.
Lee
,
J.
,
Haftka
,
R. T.
,
Griffin
,
O. H.
, Jr.
,
Watson
,
L. T.
, and
Sensmeier
,
M. D.
,
1994
, “
Detecting Delamination in a Composite Beam Using Anti-Optimization
,”
Struct. Optim.
,
8
(
2/3
), pp.
93
100
.10.1007/BF01743304
19.
Lombardi
,
M.
, and
Haftka
,
R. T.
,
1998
, “
Anti-Optimization Technique for Structural Design Under Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1-2
), pp.
19
31
.10.1016/S0045-7825(97)00148-5
20.
McWilliam
,
S.
,
2001
, “
Anti-Optimization of Uncertain Structures Using Interval Analysis
,”
Comput. Struct.
,
79
, pp.
421
430
.10.1016/S0045-7949(00)00143-7
21.
Ohsaki
,
M.
,
Zhang
,
J.
, and
Elishakoff
,
I.
,
2012
, “
Multiobjective Hybrid Optimization and Anti-Optimization for Force Design of Tensegrity Structures
,”
ASME J. Appl. Mech.
,
79
(2), p.
021015
.10.1115/1.4005580
22.
Qiu
,
Z. P.
, and
Wang
,
X. J.
,
2010
, “
Structural Anti-Optimization With Interval Design Parameters
,”
Struct. Multidiscip. Optim.
,
41
, pp.
397
406
.10.1007/s00158-009-0424-y
23.
Zingales
,
M.
, and
Elishakoff
,
I.
,
2000
, “
Anti-Optimization Versus Probability in an Applied Mechanics Problem: Vector Uncertainty
,”
ASME J. Appl. Mech.
,
67
(
3
), pp.
472
484
.10.1115/1.1313533
24.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
New York
, pp.
333
335
.
You do not currently have access to this content.