This work investigated the effects of stiff inclusions on the thermoviscoelastic properties and recovery behavior of shape memory polymer composites. Recent manufacturing advances have increased the applicability and interest in SMPCs made with carbon and glass inclusions. The resulting biphasic material introduces changes to both the thermal and mechanical responses, which are not fully understood. Previous studies of these effects have been concerned chiefly with experimental characterization and application of these materials. The few existing computational studies have been constrained by the limitations of available constitutive models for the SMP matrix material. The present study applied previously developed finite-deformation, time-dependent thermoviscoelastic models for amorphous SMPs to investigate the properties and shape memory behavior of SMPCs with a hexagonal arrangement of hard inclusions. A finite element model of a repeating unit cell was developed for the periodic microstructure of the SMPC and used to evaluate the temperature-dependent viscoelastic properties, including the storage modulus, tan δ, coefficient of thermal expansion, and Young's modulus, as well as the shape recovery response, characterized by the unconstrained strain recovery response and the constrained recovery stress response. The presence of inclusions in greater volume fractions were shown to lower both the glass transition and recovery temperatures slightly, while substantially increasing the storage and Young's modulus. The inclusions also negligibly affected the unconstrained strain recovery rate, while decreasing the constrained recovery stress response. The results demonstrate the potential of using hard fillers to increase the stiffness and hardness of amorphous networks for structural application without significantly affecting the temperature-dependence and time-dependence of the shape recovery response.

References

1.
Liu
,
C.
,
Qin
,
H.
, and
Mather
,
P. T.
,
2007
, “
Review of Progress in Shape-Memory Polymers
,”
J. Mater. Chem.
,
17
(
16
), pp.
1543
1558
.10.1039/b615954k
2.
Lan
,
X.
,
Liu
,
Y.
,
Lv
,
H.
,
Wang
,
X.
,
Leng
,
J.
, and
Du
,
S.
,
2009
, “
Fiber Reinforced Shape-Memory Polymer Composite and Its Application in a Deployable Hinge
,”
Smart Materials & Structures
,
18
(
2
), p.
024002
.10.1088/0964-1726/18/2/024002
3.
Ware
,
T.
,
Ellson
,
G.
,
Kwasnik
,
A.
,
Drewicz
,
S.
,
Gall
,
K.
, and
Voit
,
W.
,
2011
, “
Tough Shape-Memory Polymer-Fiber Composites
,”
J. Reinforced Plastics and Composites
,
30
(
5
), pp.
371
380
.10.1177/0731684410395418
4.
Ivens
,
J.
,
Urbanus
,
M.
, and
Smet
,
C. D.
,
2011
, “
Shape Recovery in a Thermoset Shape Memory Polymer and Its Fabric-Reinforced Composites
,”
Express Polymer Lett.
,
5
(
3
), pp.
254
261
.10.3144/expresspolymlett.2011.25
5.
Hampikian
,
J. M.
,
Heaton
,
B. C.
,
Tong
,
F. C.
,
Zhang
,
Z.
, and
Wong
,
C. P.
,
2006
, “
Mechanical and Radiographic Properties of a Shape Memory Polymer Composite For Intracranial Aneurysm Coils
,”
Mater. Sci. Eng. C-Biomimetic and Supramolecular Systems
,
26
(
8
), pp.
1373
1379
.10.1016/j.msec.2005.08.026
6.
Gall
,
K.
,
Mikulas
,
M.
,
Munshi
,
N. A.
,
Beavers
,
F.
, and
Tupper
,
M.
,
2000
, “
Carbon Fiber Reinforced Shape Memory Polymer Composites
,”
Journal of Intelligent Material Systems and Structures
,
11
(
11
), pp.
877
886
.
7.
Zhou
,
B.
, and
Liu
,
Y.-J.
,
2009
, “
A Glass Transition Model for Shape Memory Polymer and Its Composite
,”
Int. J. Mod. Phys. B
,
23
(
6–7
), pp.
1248
1253
.10.1142/S0217979209060762
8.
Leng
,
J.
,
Lan
,
X.
,
Lv
,
H.
,
Zhang
,
D.
,
Liu
,
Y.
, and
Du
,
S.
,
2007
, “
Investigation of Mechanical and Conductive Properties of Shape Memory Polymer Composite (SMPC)
,”
Proc. SPIE 6526
, Behavior and Mechanics of Multifunctional and Composite Materials, 65262V.10.1117/12.715510
9.
Ohki
,
T.
,
Ni
,
Q. Q.
,
Ohsako
,
N.
, and
Iwamoto
,
M.
,
2004
, “
Mechanical and Shape Memory Behavior of Composites With Shape Memory Polymer
,”
Composites Part A—Applied Science and Manufacturing
,
35
(
9
), pp.
1065
1073
.10.1016/j.compositesa.2004.03.001
10.
Leng
,
J.
,
Lv
,
H.
,
Liu
,
Y.
, and
Du
,
S.
,
2008
, “
Synergic Effect of Carbon Black and Short Carbon Fiber on Shape Memory Polymer Actuation by Electricity
,”
J. Appl. Phys.
,
104
(
10
), p.
104917
.10.1063/1.3026724
11.
Li
,
F. K.
,
Qi
,
L. Y.
,
Yang
,
J. P.
,
Xu
,
M.
,
Luo
,
X. L.
, and
Ma
,
D. Z.
,
2000
, “
Polyurethane/Conducting Carbon Black Composites: Structure, Electric Conductivity, Strain Recovery Behavior, and Their Relationships
,”
J. Appl. Polym. Sci.
,
75
(
1
), pp.
68
77
.10.1002/(SICI)1097-4628(20000103)75:1<68::AID-APP8>3.0.CO;2-I
12.
Tobushi
,
H.
,
Okumura
,
K.
,
Hayashi
,
S.
, and
Ito
,
N.
,
2001
, “
Thermomechanical Constitutive Model of Shape Memory Polymer
,”
Mech. Mater.
,
33
(
10
), pp.
545
554
.10.1016/S0167-6636(01)00075-8
13.
Liu
,
Y.
,
Gall
,
K.
,
Dunn
,
M. L.
,
Greenberg
,
A. R.
, and
Diani
,
J.
,
2006
, “
Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling
,”
Int. J. Plasticity
,
22
(
2
), pp.
279
313
.10.1016/j.ijplas.2005.03.004
14.
Nguyen
,
T. D.
,
Yakacki
,
C. M.
,
Brahmbhatt
,
P. D.
, and
Chambers
,
M. L.
,
2010
, “
Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers
,”
Adv. Mater.
,
22
(
31
), pp.
3411
3423
.10.1002/adma.200904119
15.
Henry
,
C. P.
,
McKnight
,
G. P.
,
Enke
,
A.
,
Bortolin
,
R.
, and
Joshi
,
S.
,
2008
, “
3D FEA Simulation of Segmented Reinforcement Variable Stiffness Composites
,”
Proc. SPIE 6929
, Behavior and Mechanics of Multifunctional and Composite Materials, 69290X.10.1117/12.778891
16.
Shi
,
G.
,
Yang
,
Q.
, and
Zhang
,
Q.
,
2012
, “
Investigation of Buckling Behavior of Carbon Nanotube/Shape Memory Polymer Composite Shell
,”
Proc. SPIE 8409
,
Third International Conference on Smart Materials and Nanotechnology in Engineering
, 840916.10.1117/12.923313
17.
Lan
,
X.
,
Wang
,
X.
,
Lu
,
H.
,
Liu
,
Y.
, and
Leng
,
J.
,
2009
, “
Shape Recovery Performances of a Deployable Hinge Fabricated by Fiber-Reinforced Shape-Memory Polymer
,”
Proc. SPIE 7289
,
Behavior and Mechanics of Multifunctional Materials and Composites
, 728910.10.10.1117/12.815715
18.
Nishikawa
,
M.
,
Wakatsuki
,
K.
,
Yoshimura
,
A.
, and
Takeda
,
N.
,
2012
, “
Effect of Fiber Arrangement on Shape Fixity and Shape Recovery in Thermally Activated Shape Memory Polymer-Based Composites
,”
Composites Part A—Applied Science And Manufacturing
,
43
(
1
), pp.
165
173
.10.1016/j.compositesa.2011.10.005
19.
Nishikawa
,
M.
,
Wakatsuki
,
K.
, and
Takeda
,
N.
,
2010
, “
Thermomechanical Experiment and Analysis on Shape Recovery Properties of Shape Memory Polymer Influenced by Fiber Reinforcement
,”
J. Mater. Sci.
,
45
(
14
), pp.
3957
3960
.10.1007/s10853-010-4545-x
20.
Jarali
,
C. S.
,
Raja
,
S.
, and
Kiefer
,
B.
,
2011
, “
Modeling the Effective Properties and Thermomechanical Behavior of SMA-SMP Multifunctional Composite Laminates
,”
Polymer Composites
,
32
(
6
), pp.
910
927
.10.1002/pc.21110
21.
Yang
,
Q.
,
He
,
X.
,
Liu
,
X.
,
Leng
,
F.
, and
Mai
,
Y.
,
2012
, “
The Effective Properties and Local Aggregation Effect of CNT/SMP Composites
,”
Composites: Part B
,
43
(
1
), pp.
33
38
.10.1016/j.compositesb.2011.04.027
22.
Westbrook
,
K. K.
,
Kao
,
P. H.
,
Castro
,
F.
,
Ding
,
Y.
, and
Jerry Qi
,
H.
,
2011
, “
A 3D Finite Deformation Constitutive Model for Amorphous Shape Memory Polymers: A Multi-Branch Modeling Approach for Nonequilibrium Relaxation Processes
,”
Mech. Mater.
,
43
(
12
), pp.
853
869
.10.1016/j.mechmat.2011.09.004
23.
Yu
,
K.
,
Westbrook
,
K. K.
,
Kao
,
P. H.
,
Leng
,
J.
, and
Qi
,
H. J.
,
2013
, “
Design Considerations for Shape Memory Polymer Composites With Magnetic Particles
,”
J. Composite Mater.
,
47
(
1
), pp.
51
63
.10.1177/0021998312447647
24.
Nguyen
,
T. D.
,
Qi
,
H. J.
,
Castro
,
F.
, and
Long
,
K. N.
,
2008
, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2792
2814
.10.1016/j.jmps.2008.04.007
25.
Drago
,
A.
, and
Pindera
,
M.-J.
,
2007
, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures
,”
Composites Sci. Technol.
,
67
(
6
), pp.
1243
1263
.10.1016/j.compscitech.2006.02.031
26.
Kowalczyk
,
P.
,
2012
, “
Parametric Constitutive Model of Uni-Directional Fiber-Matrix Composite
,”
Finite Elements in Analysis and Design
,
50
(
1
), pp.
243
254
.10.1016/j.finel.2011.09.015
27.
Alexander
,
S.
,
2012
, “
Modeling the Thermomechanical Response of Shape Memory Polymer Composites
,” Master's thesis, Johns Hopkins University, Baltimore, MD.
28.
Xia
,
Z.
,
Zhang
,
Y.
, and
Ellyin
,
F.
,
2003
, “
A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications
,”
Int. J. Solids Structures
,
40
(
8
), pp.
1907
1921
.10.1016/S0020-7683(03)00024-6
29.
Xia
,
Z.
,
Zhou
,
C.
,
Yong
,
Q.
, and
Wang
,
X.
,
2006
, “
On Selection of Repeated Unit Cell Model and Application of Unified Periodic Boundary Conditions in Micro-Mechanical Analysis of Composites
,”
Int. J. Solids and Structures
,
43
(
2
), pp.
266
278
.10.1016/j.ijsolstr.2005.03.055
30.
Sun
,
C. T.
, and
Vaidya
,
R. S.
,
1996
, “
Prediction of Composite Properties From a Representative Volume Element
,”
Compos. Sci. Technol.
,
56
(
2
), pp.
171
179
.10.1016/0266-3538(95)00141-7
31.
Chen
,
X.
, and
Nguyen
,
T. D.
,
2011
, “
Influence of Thermoviscoelastic Properties and Loading Conditions on the Recovery Performance of Shape Memory Polymers
,”
Mech. Mater.
,
43
(
3
), pp.
127
138
.10.1016/j.mechmat.2011.01.001
32.
Yang
,
B.
,
Huang
,
W. M.
,
Li
,
C.
,
Li
,
L.
, and
Chor
,
J. H.
,
2005
, “
Qualitative Separation of the Effects of Carbon Nano-Powder and Moisture on the Glass Transition Temperature of Polyurethane Shape Memory Polymer
,”
Scr. Mater.
,
53
(
1
), pp.
105
107
.10.1016/j.scriptamat.2005.03.009
33.
Ahmad
,
M.
,
Singh
,
D.
,
Fu
,
Y. Q.
,
Miraftab
,
M.
, and
Luo
,
J. K.
,
2011
, “
Stability and Deterioration of a Shape Memory Polymer Fabric Composite Under Thermomechanical Stress
,”
Polymer Degradation and Stability
,
96
(
8
), pp.
1470
1477
.10.1016/j.polymdegradstab.2011.05.009
34.
Lan
,
X.
,
Liu
,
Y.
, and
Leng
,
J.
,
2010
, “
Shape Recovery Mechanics of Fiber-Reinforced Shape-Memory Polymer Composite
,”
Proceedings of the SPIE 7645, Industrial and Commercial Applications of Smart Structures Technologies
, 76450F.
You do not currently have access to this content.