Interfaces frequently exist in polycrystalline and multiphase materials. In nanoscale joints, interface properties, such as interface stresses and interface elasticity, influence the stress and displacement field near the interface. Generally, a misfit dislocation exists in the interface due to the mismatch of lattice length in crystals composing the joints. In the present paper, a misfit dislocation is introduced to a coherent interface in order to calculate the stress and displacement distributions in an incoherent interface. A model with an interface zone transferring traction only in the zone from one region to the opposite region is proposed, because these regions slip against each other due to the misfit dislocation. The traction in the interface depends on the displacement and the interface properties. Stresses and displacements considering the interface properties are deduced using a three-dimensional Stroh’s formalism. Bulk stress and displacements around the misfit dislocation are shown to increase with increasing the values of the interface stress and the interface elastic moduli. The stresses and displacements obtained from the derived solutions are compared with those obtained through molecular dynamic (MD) analysis. It is shown that the proposed interface zone model can adequately express the displacement and stress near the misfit dislocation.

References

1.
Taylor
,
G. I.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical
,”
Proc. R. Soc. London, Ser. A
,
145
(
855
), pp.
362
387
.10.1098/rspa.1934.0106
2.
Burgers
,
J. M.
,
1940
, “
Geometrical Considerations Concerning the Structural Irregularities to be Assumed in a Crystal
,”
Proc. Phys. Soc.
,
52
(
1
), pp.
23
33
.10.1088/0959-5309/52/1/304
3.
Bonnet
,
R.
,
1996
, “
Elasticity Theory of Straight Dislocation in a Multilayer
,”
Phys. Rev. B
,
53
(
16
), pp.
10978
10982
.10.1103/PhysRevB.53.10978
4.
Bonnet
,
R.
,
2000
, “
A Biperiodic Network of Misfit Dislocations in a Thin Bicrystalline Foil
,”
Phys. Status Solidi A
,
180
(
487
), pp.
487
497
.10.1002/1521-396X(200008)180:2<487::AID-PSSA487>3.0.CO;2-Y
5.
Yao
,
Y.
,
Wang
,
T.
, and
Wang
,
C.
,
1999
, “
Peierls–Nabarro Model of Interfacial Misfit Dislocation: An Analytic Solution
,”
Phys. Rev. B
,
59
(
12
), pp.
8232
8236
.10.1103/PhysRevB.59.8232
6.
Bonnet
,
R.
,
Youssef
,
S. B.
, and
Fnaiech
,
M.
,
2001
, “
Simulation of the Free Surface Deformation Due to Subsurface Dislocations Arranged in Trigonal Networks
,”
Mater. Sci. Eng.: A
,
297
(
1–2
), pp.
286
289
.10.1016/S0921-5093(00)01698-1
7.
Outtas
,
T.
,
Adami
,
L.
,
Derardja
,
A.
,
Madani
,
S.
, and
Bonnet
,
R.
,
2001
, “
Anisotropic Elastic Field of a Thin Bicrystal Deformed by a Biperiodic Network of Misfit Dislocations
,”
Phys. Status Solidi A
,
188
(
3
), pp.
1041
1045
.10.1002/1521-396X(200112)188:3<1041::AID-PSSA1041>3.0.CO;2-I
8.
Outtas
,
T.
,
Adami
,
L.
, and
Bonnet
,
R.
,
2002
, “
A Biperiodic Interfacial Pattern of Misfit Dislocation Interacting With Both Free Surfaces of a Thin Bicrystalline Sandwich
,”
Solid State Sci.
,
4
(
2
), pp.
161
166
.10.1016/S1293-2558(01)01212-2
9.
Yuan
,
J. H.
,
Pan
,
E.
, and
Chen
,
W. Q.
,
2013
, “
Line-Integral Representations for the Elastic Displacements, Stresses and Interaction Energy of Arbitrary Dislocation Loops in Transversely Isotropic Biomaterials
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3472
3489
.10.1016/j.ijsolstr.2013.06.017
10.
Wang
,
X.
,
Pan
,
E.
, and
Albrecht
,
J. D.
,
2007
, “
Anisotropic Elasticity of Multilayered Crystals Deformed by a Biperiodic Network of Misfit Dislocations
,”
Phys. Rev. B
,
76
(
13
), p.
134112
.10.1103/PhysRevB.76.134112
11.
Vattre
,
A. J.
, and
Demkowicz
,
M. J.
,
2013
, “
Determining the Burgers Vectors and Elastic Strain Energies of Interface Dislocation Arrays Using Anisotropic Elasticity Theory
,”
Acta Mater.
,
61
(
14
), pp.
5172
5187
.10.1016/j.actamat.2013.05.006
12.
Wang
,
Y.
,
Ruterana
,
P.
,
Kret
,
S.
,
Chen
,
J.
,
El Kazzi
,
S.
,
Desplanque
,
L.
, and
Wallart
,
X.
,
2012
, “
Mechanism of Formation of the Misfit Dislocations at the Cubic Materials Interfaces
,”
Appl. Phys. Lett.
,
100
(
26
), p.
262110
.10.1063/1.4731787
13.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
57
(
4
), pp.
291
323
10.1007/BF00261375.
14.
Koguchi
,
H.
,
1992
, “
Stress Analysis for Nano-Scaled Elastic Materials (1st Report, Formulation of Boundary Condition for Interface With Surface Stress)
,”
Trans. Jpn. Soc. Mech. Eng.
,
58
(
555
), pp.
2132
2137
.10.1299/kikaia.58.2132
15.
Koguchi
,
H.
,
1996
, “
Stress Analysis for Nano-Scaled Elastic Materials: Elastic Contact Problems Considering Surface Stresses
,”
JSME Int. J., Ser. A
,
39
(
3
), pp.
3337
3345
.
16.
Ibach
,
H.
,
1997
, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
,
29
(
5–6
), pp.
195
263
.10.1016/S0167-5729(97)00010-1
17.
Muller
,
P.
, and
Saul
,
A.
,
2004
, “
Elastic Effects on Surface Physics
,”
Surf. Sci. Rep.
,
54
(
5–8
), pp.
157
258
.10.1016/j.surfrep.2004.05.001
18.
Koguchi
,
H.
,
2007
, “
Effects of Surface Stresses on Elastic Fields Near Surface and Interface
,”
J. Solid Mech. Mater. Eng.
,
1
(
2
), pp.
152
168
.10.1299/jmmp.1.152
19.
Hanbucken
,
M.
,
Muller
,
P.
, and
Wehrspohn
,
R. B.
,
2011
,
Mechanical Stress on the Nanoscale
,
Wiley-VCH Verlag
,
Weinheim, Germany
.
20.
Koguchi
,
H.
,
2008
, “
Surface Green Function With Surface Stresses and Surface Elasticity Using Stroh’s Formalism
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061014
.10.1115/1.2967893
21.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.10.1088/0957-4484/11/3/301
22.
Shenoy
,
V. B.
,
2002
, “
Size-Dependent Rigidities of Nanosized Torsional Elements
,”
Int. J. Solids Struct.
,
39
(
15
), pp.
4039
4052
.10.1016/S0020-7683(02)00261-5
23.
Koguchi
,
H.
,
2003
, “
Surface Deformation Induced by a Variation in Surface Stresses in Anisotropic Half-Regions
,”
Philos. Mag.
,
83
(
10
), pp.
1205
1226
.10.1080/0141861031000071971
24.
Koguchi
,
H.
,
2004
, “
Contact and Adhesion Analysis Considering a Variation of Surface Stresses (2nd Report, A Comparison of the Present Theory and JKR Theory)
,”
Trans. Jpn. Soc. Mech. Eng.
,
70
(
697
), pp.
1332
1340
.10.1299/kikaia.70.1332
25.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
,
2005
, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
,
53
(
7
), pp.
1574
1596
.10.1016/j.jmps.2005.02.009
26.
Dingreville
,
R.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2005
, “
Surface Free Energy and Its Effect on the Elastic Behavior of Nano-Sized Particles, Wires and Films
,”
J. Mech. Phys. Solids
,
53
(
8
), pp.
1827
1854
.10.1016/j.jmps.2005.02.012
27.
Kim
,
C. I.
,
Schiavone
,
P.
, and
Ru
,
C.-Q.
,
2010
, “
The Effects of Surface Elasticity on an Elastic Solid With Mode-III Crack: Complete Solution
,”
ASME J. Appl. Mech.
,
77
(
2
), p.
021011
.10.1115/1.3177000
28.
Kim
,
C. I.
,
Ru
,
C.-Q.
, and
Schiavone
,
P.
,
2010
, “
Analysis of Plane-Strain Crack Problems (Mode-I & Mode-II) in the Presence of Surface Elasticity
,”
J. Elasticity
,
104
(
1–2
), pp.
397
420
.10.1007/s10659-010-9287-0
29.
Ladan
,
P.
, and
Hossein
,
M. S.
,
2011
, “
Surface and Interface Effects on Torsion of Eccentrically Two-Phase fcc Circular Nanorods: Determination of the Surface/Interface Elastic Properties Via an Atomistic Approach
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011011
.10.1115/1.4002211
30.
Gutkin
,
M. Yu.
,
Enzevaee
,
C.
, and
Shodja
,
H. M.
,
2013
, “
Interface Effects on Elastic Behavior of an Edge Dislocation in a Core–Shell Nanowire Embedded to an Infinite Matrix
,”
Int. J. Solids Struct.
,
50
(
7–8
), pp.
1177
1186
.10.1016/j.ijsolstr.2012.12.008
31.
Dingreville
,
R.
,
Hallil
,
A.
, and
Berbenni
,
S.
,
2014
, “
From Coherent to Incoherent Mismatched Interfaces: A Generalized Continuum Formulation of Surface Stresses
,”
J. Mech. Phys. Solids
,
72
, pp.
40
60
.10.1016/j.jmps.2014.08.003
32.
Ting
,
T. C. T.
,
1996
,
Anisotropic Elasticity—Theory and Application
,
Oxford University Press
,
New York
.
33.
Wadley
,
H. N. G.
,
Zhou
,
X.
,
Johnson
,
R. A.
, and
Neurock
,
M.
,
2001
, “
Mechanisms, Models and Methods of Vapor Deposition
,”
Prog. Mater. Sci.
,
46
(3–4), pp.
329
377
.10.1016/S0079-6425(00)00009-8
You do not currently have access to this content.