To determine the impact of cohesive law shapes on the modeling of interfacial debonding in lithium-ion battery electrodes, analytical methods based on different cohesive models for the debonding process have been developed individually. Three different cohesive laws, namely, triangular, trapezoidal, and rectangular laws, have been employed. To ensure comparability, the cohesive strength and the fracture toughness have been set to be identical for different cohesive laws. The evaluation of debonding onset has suggested that the cohesive law shape affects the modeling results only when the interface is ductile. The largest possible difference for the triangular law and the rectangular law on the debonding onset has been estimated. A discussion for specific electrodes has also been provided.

References

1.
Xiao
,
X.
,
Liu
,
P.
,
Verbrugge
,
M. W.
,
Haftbaradaran
,
H.
, and
Gao
,
H.
,
2011
, “
Improved Cycling Stability of Silicon Thin Film Electrodes Through Patterning for High Energy Density Lithium Batteries
,”
J. Power Sources
,
196
(
3
), pp.
1409
1416
.
2.
He
,
Y.
,
Yu
,
X.
,
Li
,
G.
,
Wang
,
R.
,
Li
,
H.
,
Wang
,
Y.
,
Gao
,
H.
, and
Huang
,
X.
,
2012
, “
Shape Evolution of Patterned Amorphous and Polycrystalline Silicon Microarray Thin Film Electrodes Caused by Lithium Insertion and Extraction
,”
J. Power Sources
,
216
, pp.
131
138
.
3.
Chen
,
J.
,
Liu
,
J.
,
Qi
,
Y.
,
Sun
,
T.
, and
Li
,
X.
,
2013
, “
Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
A1502
A1509
.
4.
Tariq
,
F.
,
Yufit
,
V.
,
Eastwood
,
D. S.
,
Merla
,
Y.
,
Biton
,
M.
,
Wu
,
B.
,
Chen
,
Z.
,
Freedman
,
K.
,
Offer
,
G.
,
Peled
,
E.
,
Lee
,
P. D.
,
Golodnitsky
,
D.
, and
Brandon
,
N.
,
2014
, “
In-Operando X-Ray Tomography Study of Lithiation Induced Delamination of Si Based Anodes for Lithium-Ion Batteries
,”
ECS Electrochem. Lett.
,
3
(
7
), pp.
A76
A78
.
5.
Chen
,
R.
,
Wu
,
F.
,
Li
,
L.
,
Guan
,
Y.
,
Qiu
,
X.
,
Chen
,
S.
,
Li
,
Y.
, and
Wu
,
S.
,
2007
, “
Butylene Sulfite as a Film-Forming Additive to Propylene Carbonate-Based Electrolytes for Lithium Ion Batteries
,”
J. Power Sources
,
172
(
1
), pp.
395
403
.
6.
Kim
,
J.-H.
,
Woo
,
S. C.
,
Park
,
M.-S.
,
Kim
,
K. J.
,
Yim
,
T.
,
Kim
,
J.-S.
, and
Kim
,
Y.-J.
,
2013
, “
Capacity Fading Mechanism of LiFePO4-Based Lithium Secondary Batteries for Stationary Energy Storage
,”
J. Power Sources
,
229
, pp.
190
197
.
7.
Taheri
,
P.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Investigating Electrical Contact Resistance Losses in Lithium-Ion Battery Assemblies for Hybrid and Electric Vehicles
,”
J. Power Sources
,
196
(
15
), pp.
6525
6533
.
8.
Lu
,
B.
,
Song
,
Y.
, and
Zhang
,
J.
,
2015
, “
Time to Delamination Onset and Critical Size of Patterned Thin Film Electrodes of Lithium Ion Batteries
,”
J. Power Sources
,
289
, pp.
168
183
.
9.
Yang
,
F.
,
2011
, “
Criterion for Insertion-Induced Microcracking and Debonding of Thin Films
,”
J. Power Sources
,
196
(
1
), pp.
465
469
.
10.
Haftbaradaran
,
H.
,
Xiao
,
X.
,
Verbrugge
,
M. W.
, and
Gao
,
H.
,
2012
, “
Method to Deduce the Critical Size for Interfacial Delamination of Patterned Electrode Structures and Application to Lithiation of Thin-Film Silicon Islands
,”
J. Power Sources
,
206
, pp.
357
366
.
11.
Haftbaradaran
,
H.
,
2015
, “
Solute Segregation and Stress Intensity Factors at the Edge of Elastic Thin-Film Electrodes Under Chemical Equilibrium
,”
J. Power Sources
,
288
, pp.
278
287
.
12.
Guo
,
K.
,
Tamirisa
,
P. A.
,
Sheldon
,
B. W.
,
Xiao
,
X.
, and
Gao
,
H.
,
2018
, “
Pop-Up Delamination of Electrodes in Solid-State Batteries
,”
J. Electrochem. Soc.
,
165
(
3
), pp.
A618
A625
.
13.
Pal
,
S.
,
Damle
,
S. S.
,
Patel
,
S. H.
,
Datta
,
M. K.
,
Kumta
,
P. N.
, and
Maiti
,
S.
,
2014
, “
Modeling the Delamination of Amorphous-Silicon Thin Film Anode for Lithium-Ion Battery
,”
J. Power Sources
,
246
, pp.
149
159
.
14.
Liu
,
M.
,
2015
, “
Finite Element Analysis of Lithiation-Induced Decohesion of a Silicon Thin Film Adhesively Bonded to a Rigid Substrate Under Potentiostatic Operation
,”
Int. J. Solids Struct.
,
67–68
, pp.
263
271
.
15.
Liu
,
M.
,
Gao
,
C.
, and
Yang
,
F.
,
2017
, “
Analysis of Diffusion-Induced Delamination of an Elastic-Perfectly Plastic Film on a Deformable Substrate Under Potentiostatic Operation
,”
Modell. Simul. Mater. Sci. Eng.
,
25
(
6
), p.
065019
.
16.
Wen
,
J.
,
Wei
,
Y.
, and
Cheng
,
Y.-T.
,
2018
, “
Stress Evolution in Elastic-Plastic Electrodes During Electrochemical Processes: A Numerical Method and Its Applications
,”
J. Mech. Phys. Solids
,
116
, pp.
403
415
.
17.
Lu
,
B.
,
Song
,
Y.
,
Guo
,
Z.
, and
Zhang
,
J.
,
2013
, “
Modeling of Progressive Delamination in a Thin Film Driven by Diffusion-Induced Stresses
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2495
2507
.
18.
Lu
,
B.
,
Song
,
Y.-C.
,
Guo
,
Z.-S.
, and
Zhang
,
J.-Q.
,
2013
, “
Analysis of Delamination in Thin Film Electrodes Under Galvanostatic and Potentiostatic Operations With Li-Ion Diffusion From Edge
,”
Acta Mech. Sin.
,
29
(
3
), pp.
348
356
.
19.
Liu
,
M.
,
Lu
,
B.
,
Shi
,
D.-L.
, and
Zhang
,
J.-Q.
,
2018
, “
Two-Dimensional Analysis of Progressive Delamination in Thin Film Electrodes
,”
Acta Mech. Sin.
,
34
(
2
), pp.
359
370
.
20.
Lu
,
B.
,
Zhao
,
Y.
,
Song
,
Y.
, and
Zhang
,
J.
,
2016
, “
Analytical Model on Lithiation-Induced Interfacial Debonding of an Active Layer From a Rigid Substrate
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121009
.
21.
Chandra
,
N.
,
Li
,
H.
,
Shet
,
C.
, and
Ghonem
,
H.
,
2002
, “
Some Issues in the Application of Cohesive Zone Models for Metal–Ceramic Interfaces
,”
Int. J. Solids Struct.
,
39
, pp.
2827
2855
.
22.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.
23.
Yan
,
Y.
, and
Shang
,
F.
,
2009
, “
Cohesive Zone Modeling of Interfacial Delamination in PZT Thin Films
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2739
2749
.
24.
Alfano
,
G.
,
2006
, “
On the Influence of the Shape of the Interface Law on the Application of Cohesive-Zone Models
,”
Compos. Sci. Technol.
,
66
(
6
), pp.
723
730
.
25.
Campilho
,
R. D. S. G.
,
Banea
,
M. D.
,
Neto
,
J. A. B. P.
, and
da Silva
,
L. F. M.
,
2013
, “
Modelling Adhesive Joints With Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer
,”
Int. J. Adhes. Adhes.
,
44
, pp.
48
56
.
26.
Fernández-Cañadas
,
L. M.
,
Iváñez
,
I.
, and
Sanchez-Saez
,
S.
,
2016
, “
Influence of the Cohesive Law Shape on the Composite Adhesively-Bonded Patch Repair Behavior
,”
Composites Part B
,
91
, pp.
414
421
.
27.
Zhang
,
J.
,
Wang
,
J.
,
Yuan
,
Z.
, and
Jia
,
H.
,
2018
, “
Effect of the Cohesive law Shape on the Modelling of Adhesive Joints Bonded With Brittle and Ductile Adhesives
,”
Int. J. Adhes. Adhes.
,
85
, pp.
37
43
.
28.
Shet
,
C.
, and
Chandra
,
N.
,
2004
, “
Effect of the Shape of T–δ Cohesive Zone Curves on the Fracture Response
,”
Mech. Adv. Mater. Struct.
,
11
(
3
), pp.
249
275
.
29.
Ridha
,
M.
,
Tan
,
V. B. C.
, and
Tay
,
T. E.
,
2011
, “
Traction–Separation Laws for Progressive Failure of Bonded Scarf Repair of Composite Panel
,”
Compos. Struct.
,
93
(
4
), pp.
1239
1245
.
30.
Heidari-Rarani
,
M.
, and
Ghasemi
,
A. R.
,
2017
, “
Appropriate Shape of Cohesive Zone Model for Delamination Propagation in ENF Specimens With R-Curve Effects
,”
Theor. Appl. Fract. Mech.
,
90
, pp.
174
181
.
31.
Liu
,
X. H.
,
Wang
,
J. W.
,
Huang
,
S.
,
Fan
,
F.
,
Huang
,
X.
,
Liu
,
Y.
,
Krylyuk
,
S.
,
Yoo
,
J.
,
Dayeh
,
S. A.
,
Davydov
,
A. V.
,
Mao
,
S. X.
,
Picraux
,
S. T.
,
Zhang
,
S.
,
Li
,
J.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
In Situ Atomic-Scale Imaging of Electrochemical Lithiation in Silicon
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
749
756
.
32.
Wang
,
J. W.
,
He
,
Y.
,
Fan
,
F.
,
Liu
,
X. H.
,
Xia
,
S.
,
Liu
,
Y.
,
Harris
,
C. T.
,
Li
,
H.
,
Huang
,
J. Y.
,
Mao
,
S. X.
, and
Zhu
,
T.
,
2013
, “
Two-Phase Electrochemical Lithiation in Amorphous Silicon
,”
Nano Lett.
,
13
(
2
), pp.
709
715
.
33.
Obrovac
,
M. N.
, and
Christensen
,
L.
,
2004
, “
Structural Changes in Silicon Anodes During Lithium Insertion/Extraction
,”
Electrochem. Solid-State Lett.
,
7
(
5
), pp.
A93
A96
.
34.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Harris
,
J. T.
,
Korgel
,
B. A.
,
Wang
,
C.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
,”
Nano Lett.
,
13
(
2
), pp.
758
764
.
35.
Crank
,
J.
,
1979
,
The Mathematics of Diffusion
,
Oxford University Press
,
UK
36.
Cornec
,
A.
,
Scheider
,
I.
, and
Schwalbe
,
K.-H.
,
2003
, “
On the Practical Application of the Cohesive Model
,”
Engineering Fracture Mechanics
,
70
(
14
), pp.
1963
1987
.
37.
Bhandakkar
,
T. K.
, and
Gao
,
H.
,
2010
, “
Cohesive Modeling of Crack Nucleation Under Diffusion Induced Stresses in a Thin Strip: Implications on the Critical Size for Flaw Tolerant Battery Electrodes
,”
Int. J. Solids Struct.
,
47
(
10
), pp.
1424
1434
.
38.
Bhandakkar
,
T. K.
, and
Gao
,
H.
,
2011
, “
Cohesive Modeling of Crack Nucleation in a Cylindrical Electrode Under Axisymmetric Diffusion Induced Stresses
,”
Int. J. Solids Struct.
,
48
(
16–17
), pp.
2304
2309
.
39.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
40.
Li
,
J.
,
Dozier
,
A. K.
,
Li
,
Y.
,
Yang
,
F.
, and
Cheng
,
Y.-T.
,
2011
, “
Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
158
(
6
), pp.
A689
A694
.
41.
Li
,
Y.
,
Lu
,
B.
,
Guo
,
B.
,
Song
,
Y.
, and
Zhang
,
J.
,
2019
, “
Partial Lithiation Strategies for Suppressing Degradation of Silicon Composite Electrodes
,”
Electrochim. Acta
,
295
, pp.
778
786
.
42.
Gupta
,
V.
, and
Yuan
,
J.
,
1993
, “
Measurement of Interface Strength by the Modified Laser Spallation Technique. II. Applications to Metal/Ceramic Interfaces
,”
J. Appl. Phys.
,
74
(
4
), p.
2397
.
43.
Shenoy
,
V. B.
,
Johari
,
P.
, and
Qi
,
Y.
,
2010
, “
Elastic Softening of Amorphous and Crystalline Li-Si Phases With Increasing Li Concentration: A First-Principles Study
,”
J. Power Sources
,
195
(
19
), pp.
6825
6830
.
44.
Zhang
,
W.
,
Cai
,
T. H.
, and
Sheldon
,
B. W.
,
2018
, “
The Impact of Initial SEI Formation Conditions on Strain-Induced Capacity Losses in Silicon Electrodes
,”
Adv. Energy Mater.
,
9
(
5
), p.
1803066
.
You do not currently have access to this content.