Abstract

The mechanics of mode-III defect initiation and quasi-static growth is examined by analyzing a torqued cylindrical bar separated at its midsection by a nonuniform, nonlinear cohesive interface. The exact analysis is based on the elasticity solution to the problem of a cylinder subjected to nonuniform shear traction at one end and an equilibrating torque at the other. The formulation leads to a pair of interfacial integral equations governing the relative rigid body rotation and the interfacial separation field. The cohesive interface is assumed to be modeled by three Needleman-type traction–separation relations characterized by a shear strength, a characteristic force length and, depending on the specific law, other parameters. Axisymmetric penny, edge, and annular interface defects are modeled by a strength function which varies with radial interface coordinate. Infinitesimal strain equilibrium solutions are sought by eigenfunction approximation of the solution of the governing interfacial integral equations. Results show that for increasing remote torque, at small values of force length, brittle behavior occurs that corresponds to sharp crack growth. At larger values of force length, ductile response occurs similar to a linear “spring” interface. Both behaviors ultimately give rise to the failure of the interface. Results for the stiff, strong interface under a small applied torque show excellent agreement with the static fracture mechanics solution of Benthem and Koiter (1973, “Asymptotic Approximations to Crack Problems,” Mechanics of Fracture, Vol. 1, G.C. Sih, ed., Noordhoff, Leyden, pp. 131–178) for the edge cracked, torsionally loaded cylindrical bar. Extensions of the theory are carried out for (i) the bi-cylinder problem and (ii) the decohesive, frictional interface problem.

References

1.
Zimmermann
,
E. A.
,
Launey
,
M. E.
,
Barth
,
H. D.
, and
Ritchie
,
R. O.
,
2009
, “
Mixed-Mode Fracture of Human Cortical Bone
,”
Biomaterials
,
30
(
29
), pp.
5877
5884
. 10.1016/j.biomaterials.2009.06.017
2.
Hannemann
,
R.
,
Köster
,
P.
, and
Sander
,
M.
,
2019
, “
Fatigue Crack Growth in Wheelset Axles Under Bending and Torsional Loading
,”
Int. J. Fatigue
,
118
(
Jan.
), pp.
262
270
. 10.1016/j.ijfatigue.2018.07.038
3.
Hasegawa
,
K.
,
Li
,
Y.
, and
Osakabe
,
K.
,
2014
, “
Collapse Loads for Circumferentially Through-Wall Cracked Pipes Subjected to Combined Torsion and Bending Moments
,”
Eng. Fract. Mech.
,
123
(
Jun.
), pp.
77
85
. 10.1016/j.engfracmech.2013.12.013
4.
Ryvkin
,
M.
,
1996
, “
Mode III Crack in a Laminated Medium
,”
Int. J. Solids Struct.
,
33
(
24
), pp.
3611
3625
. 10.1016/0020-7683(95)00200-6
5.
Khoshravan
,
M.
, and
Moslemi
,
M.
,
2014
, “
Investigation on Mode III Interlaminar Fracture of Glass/Epoxy Laminates Using a Modified Split Cantilever Beam Test
,”
Eng. Fract. Mech.
,
127
(
Sep.
), pp.
267
279
. 10.1016/j.engfracmech.2014.06.013
6.
Benthem
,
J. P.
and
Koiter
,
W. T.
,
1973
, “Asymptotic Approximations to Crack Problems,”
Mechanics of Fracture
, Vol.
1
,
G. C.
Sih
, ed.,
Noordhoff
,
Leyden
, pp.
131
178
.
7.
Zehnder
,
A.
, and
Zella
,
N.
,
2015
, “
Spiral to Flat Fracture Transition for Notched Rods Under Torsional Loading
,”
Int. J. Fract.
,
195
(
1–2
), pp.
87
92
. 10.1007/s10704-015-0049-7
8.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
,
42
(
1
), pp.
21
40
. 10.1007/BF00018611
9.
Xu
,
X. P.
, and
Needleman
,
A.
,
1993
, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Model. Simul. Mater. Sci. Eng.
,
1
(
2
), pp.
111
132
. 10.1088/0965-0393/1/2/001
10.
Xie
,
M.
, and
Levy
,
A. J.
,
2007
, “
Defect Propagation at a Circular Interface
,”
Int. J. Fract.
,
144
(
1
), pp.
1
20
. 10.1007/s10704-007-9071-8
11.
Nguyen
,
C.
, and
Levy
,
A. J.
,
2009
, “
An Exact Theory of Interfacial Debonding in Layered Elastic Composites
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2712
2723
. 10.1016/j.ijsolstr.2009.03.005
12.
Nguyen
,
C.
, and
Levy
,
A. J.
,
2011
, “
Mechanics of Interface Failure in the Trilayer Elastic Composite
,”
Int. J. Solids Struct.
,
48
(
18
), pp.
2467
2484
. 10.1016/j.ijsolstr.2011.04.018
13.
Song
,
S.
,
Paulino
,
G.
, and
Buttlar
,
W.
,
2006
, “
A Bilinear Cohesive Zone Model Tailored for Fracture of Asphalt Concrete Considering Viscoelastic Bulk Material
,”
Eng. Fract. Mech.
,
73
(
18
), pp.
2829
2848
. 10.1016/j.engfracmech.2006.04.030
14.
Raous
,
M.
,
2011
, “
Interface Models Coupling Adhesion and Friction
,”
C. R. Méc.
,
339
(
7–8
), pp.
491
501
. 10.1016/j.crme.2011.05.007
15.
Snozzi
,
L.
, and
Molinari
,
J.
,
2012
, “
A Cohesive Element Model for Mixed Mode Loading With Frictional Contact Capability
,”
Int. J. Numer. Methods Eng.
,
93
(
5
), pp.
510
526
. 10.1002/nme.4398
16.
Tsai
,
J.
,
Patra
,
A.
, and
Wetherhold
,
R.
,
2005
, “
Finite Element Simulation of Shaped Ductile Fiber Pullout Using a Mixed Cohesive Zone/Friction Interface Model
,”
Compos., Part A
,
36
(
6
), pp.
827
838
. 10.1016/j.compositesa.2004.10.025
17.
Tvergaard
,
V.
,
1990
, “
Effect of Fibre Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng. A
,
125
(
2
), pp.
203
213
. 10.1016/0921-5093(90)90170-8
18.
Chaboche
,
J.
,
Girard
,
R.
, and
Schaff
,
A.
,
1997
, “
Numerical Analysis of Composite Systems by Using Interphase/Interface Models
,”
Comput. Mech.
,
20
(
1–2
), pp.
3
11
. 10.1007/s004660050209
19.
Liu
,
P.
,
Gu
,
Z.
, and
Peng
,
X.
,
2016
, “
A Nonlinear Cohesive/Friction Coupled Model for Shear Induced Delamination of Adhesive Composite Joint
,”
Int. J. Fract.
,
199
(
2
), pp.
135
156
. 10.1007/s10704-016-0100-3
20.
Knauss
,
W. G.
,
1970
, “
An Observation of Crack Propagation in Anti-Plane Shear
,”
Int. J. Fract. Mech.
,
6
(
2
), p.
2
. 10.1007/bf00189825
21.
Cox
,
S.
, and
Scholz
,
C.
,
1988
, “
On the Formation and Growth of Faults: An Experimental Study
,”
J. Struct. Geol.
,
10
(
4
), pp.
413
430
. 10.1016/0191-8141(88)90019-3
22.
Horner
,
A.
,
Czabaj
,
M.
,
Davidson
,
B.
, and
Ratcliffe
,
J.
,
2015
, “
Three-Dimensional Crack Surface Evolution in Mode III Delamination Toughness Tests
,”
Eng. Fract. Mech.
,
149
(
Nov.
), pp.
313
325
. 10.1016/j.engfracmech.2015.07.013
23.
Lurie
,
A. I.
,
2005
,
Theory of Elasticity
,
Springer-Verlag
,
Berlin and Heidelberg
.
24.
Watson
,
G. N.
,
1922
,
A Treatise on the Theory of Bessel Functions
,
Cambridge
,
Cambridge
.
You do not currently have access to this content.