Abstract

Departures of the geometry of the middle surface of a thin shell from the perfect shape have long been regarded as the most deleterious imperfections responsible for reducing a shell’s buckling capacity. Here, systematic simulations are conducted for both spherical and cylindrical metal shells whereby, in the first step, dimple-shaped dents are created by indenting a perfect shell into the plastic range. Then, in the second step, buckling of the dented shell is analyzed, under external pressure for the spherical shells and in axial compression for the cylindrical shells. Three distinct buckling analyses are carried out: (1) elastic buckling accounting only for the geometry of the dent, (2) elastic buckling accounting for both dent geometry and residual stresses, and (3) a full elastic–plastic buckling analysis accounting for both the dent geometry and residual stresses. The analyses reveal the relative importance of the geometry and the residual stress associated with the dent, and they also provide a clear indicator of whether plasticity is important in establishing the buckling load of the dented shells.

References

1.
Hilburger
,
M.
,
2012
, “
Developing the Next Generation Shell Buckling Design Factors and Technologies
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Co-Located Conferences
,
Honolulu, HI
,
Apr. 23–26
.
2.
Rotter
,
J. M.
,
2017
, “
Challenges and Their Resolution in Both Philosophy and Process to Exploit Advanced Computation in Shell Structure Design
,”
Proceedings of the SSTA 2017, 11th International Conference on Shell Structures Theory and Applications
,
Gdansk, Poland
,
Oct.
, pp.
2
15
.
3.
von Kármán
,
T.
, and
Tsien
,
H. S.
,
1939
, “
The Buckling of Spherical Shells by External Pressure
,”
J. Aeronaut. Sci.
,
7
(
2
), pp.
43
50
. 10.2514/8.1019
4.
Koiter
,
W. T.
,
1945
, “
On the Stability of Elastic Equilibrium
,”
Dissertation
,
Delft, Holland
,
An English translation is available: Tech. Trans. F 10, 833
.
5.
Peterson
,
J. P.
,
Seide
,
P.
, and
Weingarten
,
V. I.
,
1965
,
Buckling of Thin-Walled Circular Cylinders
, SP-8007,
NASA
.
6.
Weingarten
,
W. I.
, and
Seide
,
P.
,
1969
,
Buckling of Thin-Walled Doubly Curved Shells
, SP-8032,
NASA
.
7.
Ravn-Jensen
,
K.
, and
Tvergaard
,
V. T.
,
1990
, “
Effect of Residual Stresses on Plastic Buckling of Cylindrical Shell Structures
,”
Int. J. Solids Struct.
,
26
(
9–10
), pp.
993
1004
. 10.1016/0020-7683(90)90013-L
8.
Song
,
S.
, and
Dong
,
P.
,
2016
, “
A Framework for Estimating Residual Stress Profile in Seam-Welded Pipe and Vessel Components Part I: Weld Region
,”
Int. J. Press. Vessels Pip.
,
146
, pp.
74
86
. 10.1016/j.ijpvp.2016.07.009
9.
Masubuchi
,
K.
,
1980
,
Analysis of Welded Structures (Residual Stresses, Distortion, and Their Consequences)
,
Elsevier
,
Pergamon, Oxford
, pp.
328
335
.
10.
Vasilikis
,
D.
,
Karamanos
,
S.
,
van Es
,
S. H. J.
, and
Grensigt
,
A.
,
2016
, “
Ultimate Bending Capacity of Spiral-Welded Steel Tubes—Part II: Predictions
,”
Thin-Walled Struct.
,
102
, pp.
305
319
. 10.1016/j.tws.2015.11.025
11.
Zheng
,
J.
,
Liu
,
Z.
, and
Champliaud
,
H.
,
2008
, “
FEM Dynamic Simulation and Analysis of the Roll-Bending Process for Forming a Conical Tube
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
330
343
. 10.1016/j.jmatprotec.2007.07.016
12.
Wullschleger
,
L.
,
2006
, “
Numerical Investigation of the Buckling Behaviour of Axially Compressed Circular Cylindrs Having Parametric Initial Dimple Imperfections
,”
Doctoral thesis
,
ETH, Zurich
,
Permanent Link
.
13.
Gerasimidis
,
S.
,
Virot
,
E. E.
,
Hutchinson
,
J. W.
, and
Rubinstein
,
S. M.
,
2018
, “
On Establishing Buckling Knockdowns for Imperfection-Sensitive Shell Structures
,”
ASME J. Appl. Mech.
,
85
(
9
), p.
091010
. 10.1115/1.4040455
14.
Jimenez
,
F. L.
,
Marthelot
,
J.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
F. M.
,
2017
, “
Knockdown Factor for the Buckling of Spherical Shells Containing Large-Amplitude Geometric Defects
,”
ASME J. Appl. Mech.
,
84
(
3
),
034501
. 10.1115/1.4035665
15.
Sanders
,
J. L.
,
1963
, “
Nonlinear Shell Theories for Thin Shells
,”
Q. Appl. Math.
,
21
(
1
), pp.
21
36
. 10.1090/qam/147023
16.
Koiter
,
W. T.
,
1966
, “
On the Nonlinear Theory of Thin Elastic Shells
,”
Proc. Kon. Ned. Ak. Wet. B
,
69
, pp.
1
54
.
17.
Hutchinson
,
J. W.
,
1972
, “
On the Postbuckling Behavior of Imperfection-Sensitive Structures in the Plastic Range
,”
ASME J. Appl. Mech.
,
39
(
1
), pp.
155
162
. 10.1115/1.3422605
18.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2017
, “
Nonlinear Buckling Interaction for Spherical Shells Subject to Pressure and Probing Forces
,”
ASME J. Appl. Mech.
,
84
(
6
),
061001
. 10.1115/1.4036355
19.
Lykhachova
,
O.
, and
Evkin
,
A.
,
2020
, “
Effect of Plasticity in the Concept of Local Buckling of Axially Compressed Cylindrical Shells
,”
Thin-Walled Struct.
,
155
, p.
106965
. 10.1016/j.tws.2020.106965
20.
Hutchinson
,
J. W.
,
1974
, “
Plastic Buckling
,”
Adv. Appl. Mech.
,
14
, pp.
67
144
.
21.
ABAQUS
,
2017
,
Software Package, ver. 6.14.4 ed.
,
Abaqus/Standard, SIMULIA
,
Providence, RI
.
22.
Yadav
,
K.
,
Cuccia
,
N.
,
Virot
,
E.
,
Rubinstein
,
S.
, and
Gerasimidis
,
S.
,
2020
, “
A Non-Destructive Technique for the Evaluation of Thin Cylindrical Shells’ Axial Buckling Capacity (Under Review)
.
You do not currently have access to this content.