Abstract

For large initial rectilinear displacements, we investigate free response of a linear oscillator inertially coupled to a rotational nonlinear energy sink (NES). Absent direct rectilinear damping, two ranges of orbitally stable solutions are accessible, in contrast to one range at lower, intermediate energies (2021, J. Appl. Mech. 88, 121009). As at lower initial energies, fractal and riddled basins of attraction are identified for both previously considered numerical combinations of the two dimensionless parameters (characterizing rotational damping, and coupling of rotational to rectilinear motion). In this case, however, the final amplitude, in addition to the final angular orientation, displays initial-condition sensitivity. For one parameter combination, most motionless initial conditions (MICs, with the masses of the linear oscillator and NES both initially at rest) lead to a discrete set of “special” orbitally stable solutions with one of two amplitudes, and no MICs lead to complete dissipation of initial energy. For the other combination, the results are similar to those at intermediate initial energies, with no MICs leading to special solutions, and many leading to complete dissipation. Results for both parameter combinations strongly suggest that no qualitatively new behavior occurs for initial energies beyond those considered here, with nonrotating asymptotic special-amplitude solutions having larger rectilinear amplitude either not existing or existing in only very small parts of the MIC space. With direct damping of rectilinear motion, transient chaos leads to initial-condition sensitivity of settling time, with the case of no direct rectilinear damping providing good guidance to damped-case behavior.

References

1.
Gendelman
,
O. V.
,
Sigalov
,
G.
,
Manevitch
,
L. I.
,
Mane
,
M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Dynamics of an Eccentric Rotational Nonlinear Energy Sink
,”
J. Appl. Mech.
,
79
(
1
), p.
011012
.
2.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
Al-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-Freedom System With Nonlinear Inertial Coupling
,”
Chaos
,
22
(
1
), p.
013118
.
3.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
Al-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
.
4.
Ding
,
K.
, and
Pearlstein
,
A. J.
,
2021
, “
Free Response of a Rotational Nonlinear Energy Sink: Complete Dissipation of Initial Energy for Small Initial Rectilinear Displacements
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
011005
.
5.
Ding
,
K.
, and
Pearlstein
,
A. J.
,
2021
, “
Free Response of a Rotational Nonlinear Energy Sink Coupled to a Linear Oscillator: Fractality, Riddling, and Initial-Condition Sensitivity at Intermediate Initial Displacements
,”
ASME J. Appl. Mech.
,
88
(
12
), p.
121009
.
6.
Saeed
,
A. S.
,
Al-Shudeifat
,
M. A.
,
Vakakis
,
A. F.
, and
Cantwell
,
W. J.
,
2019
, “
Rotary-Impact Nonlinear Energy Sink for Shock Mitigation: Analytical and Numerical Investigations
,”
Arch. Appl. Mech.
,
90
(
3
), pp.
495
521
.
7.
Tumkur
,
R. K. R.
,
Pearlstein
,
A. J.
,
Masud
,
A.
,
Gendelman
,
O. V.
,
Blanchard
,
A.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Intermediate Reynolds Number Flow Past a Sprung Circular Cylinder With an Internal Nonlinear Rotational Dissipative Element
,”
J. Fluid Mech.
,
828
, pp.
196
235
.
8.
Blanchard
,
A. B.
,
Bergman
,
L. A.
,
Vakakis
,
A. F.
, and
Pearlstein
,
A. J.
,
2019
, “
Coexistence of Multiple Long-Time Solutions for Two-Dimensional Laminar Flow Past a Linearly-Sprung Cylinder With a Rotational Energy Sink
,”
Phys. Rev. Fluids
,
4
(
5
), p.
054401
.
9.
Blanchard
,
A. B.
, and
Pearlstein
,
A. J.
,
2020
, “
On-off Switching of Vortex Shedding and Vortex-Induced Vibration in Crossflow Past a Circular Cylinder by Locking or Releasing a Rotational Nonlinear Energy Sink
,”
Phys. Rev. Fluids
,
5
(
2
), p.
023902
.
10.
Chen
,
D.
,
Gu
,
C.
,
Zhang
,
R.
,
Liu
,
J.
,
Guo
,
D.
, and
Marzocca
,
P.
,
2021
, “
Vortex-Induced Vibrations of Two Degrees-of-Freedom Sprung Cylinder With a Rotational Nonlinear Energy Sink: A Numerical Investigation
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
7
), p.
071006
.
11.
Tondl
,
A.
,
Ruijgrok
,
T.
,
Verhulst
,
F.
, and
Nabergoj
,
R.
,
2000
,
Autoparametric Resonance in Mechanical Systems
,
Cambridge University Press
,
New York
.
12.
Lai
,
Y. C.
, and
Tél
,
T.
,
2011
,
Transient Chaos: Complex Dynamics of Finite-Time Scales
,
Springer
,
New York
.
13.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
14.
Parker
,
T. S.
, and
Chua
,
L. O.
,
1989
,
Practical Numerical Techniques for Chaotic Systems
,
Springer-Verlag
,
New York
.
15.
Liao
,
S.
,
2009
, “
On the Reliability of Computed Chaotic Solutions of Non-Linear Differential Equations
,”
Tellus A
,
61
(
4
), pp.
550
564
.
16.
Liao
,
S.
,
2017
, “
On the Clean Numerical Solution of Chaotic Dynamical Systems
,”
Hydrodynamics
,
29
(
5
), pp.
729
747
.
17.
Marquardt
,
D.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
.
18.
Shanks
,
D.
,
1955
, “
Non-linear Transformations of Divergent and Slowly Convergent Sequences
,”
J. Math. Phys.
,
34
(
1–4
), pp.
1
42
.
19.
Woltering
,
M.
, and
Markus
,
M.
,
2000
, “
Riddled-Like Basins of Transient Chaos
,”
Phys. Rev. Let.
,
84
(
4
), pp.
630
633
.
20.
Grebogi
,
C.
,
Kostelich
,
E.
,
Ott
,
E.
, and
Yorke
,
J. A.
,
1987
, “
Multi-Dimensioned Intertwined Basin Boundaries: Basin Structure of the Kicked Double Rotor
,”
Phys. D
,
25
(
1–3
), pp.
347
360
.
21.
Smith
,
R. C.
,
Uncertainty Quantification: Theory, Implementation, and Applications
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.