Abstract

Entropy dynamics is a Bayesian inference methodology that can be used to quantify time-dependent posterior probability densities that guide the development of complex material models using information theory. Here, we expand its application to non-Gaussian processes to evaluate how fractal structure can influence fractional hyperelasticity and viscoelasticity in elastomers. We investigate how kinematic constraints on fractal polymer network deformation influences the form of hyperelastic constitutive behavior and viscoelasticity in soft materials such as dielectric elastomers, which have applications in the development of adaptive structures. The modeling framework is validated on two dielectric elastomers, VHB 4910 and 4949, over a broad range of stretch rates. It is shown that local fractal time derivatives are equally effective at predicting viscoelasticity in these materials in comparison to nonlocal fractional time derivatives under constant stretch rates. We describe the origin of this accuracy that has implications for simulating large-scale problems such as finite element analysis given the differences in computational efficiency of nonlocal fractional derivatives versus local fractal derivatives.

References

1.
Malvern
,
L.
,
1969
,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall Inc.
,
Englewood Cliffs, NJ
.
2.
Holzapfel
,
G.
,
2000
,
Nonlinear Solid Mechanics
,
John Wiley & Sons, Inc.
,
Chichester
.
3.
Weiner
,
J. H.
,
1983
,
Statistical Mechanics of Elasticity
,
John Wiley & Sons
,
New York
.
4.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
The Bell Syst. Technical J.
,
27
(
3
), pp.
379
423
.
5.
Jaynes
,
E.
,
2003
,
Probability Theory: The Logic of Science
,
Cambridge University Press
,
Cambridge
.
6.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
May
), pp.
620
630
.
7.
Feder
,
J.
,
2013
,
Fractals
,
Springer Science & Business Media
,
New York
.
8.
Caticha
,
A.
,
2015
, “
Entropic Dynamics
,”
Entropy
,
17
(
9
), pp.
6110
6128
.
9.
West
,
B. J.
, and
Grigolini
,
P.
,
2010
,
Complex Webs: Anticipating the Improbable
,
Cambridge University Press
,
Cambridge, UK
.
10.
He
,
J.-H.
,
2014
, “
A Tutorial Review on Fractal Spacetime and Fractional Calculus
,”
In. J. Theoretical Phys.
,
53
(
11
), pp.
3698
3718
.
11.
Havlin
,
S.
, and
Ben-Avraham
,
D.
,
1987
, “
Diffusion in Disordered Media
,”
Adv. Phys.
,
36
(
6
), pp.
695
798
.
12.
Giona
,
M.
,
Cerbelli
,
S.
, and
Roman
,
H.
,
1992
, “
Fractional Diffusion Equation and Relaxation in Complex Viscoelastic Materials
,”
Phys. A: Stat. Mech. Appl.
,
191
(
1–4
), pp.
449
453
.
13.
Mainardi
,
F.
,
Luchko
,
Y.
, and
Pagnini
,
G.
,
2007
, “
The Fundamental Solution of the Space-Time Fractional Diffusion Equation
,”
Fract. Calc. Appl. Anal.
,
4
(
2
). https://arxiv.org/abs/cond-mat/0702419
14.
Mashayekhi
,
S.
,
Hussaini
,
M. Y.
, and
Oates
,
W.
,
2019
, “
A Physical Interpretation of Fractional Viscoelasticity Based on the Fractal Structure of Media: Theory and Experimental Validation
,”
J. Mech. Phys. Solids.
,
128
, pp.
137
150
.
15.
Ostoja-Starzewski
,
M.
,
Li
,
J.
,
Joumaa
,
H.
, and
Demmie
,
P. N.
,
2014
, “
From Fractal Media to Continuum Mechanics
,”
ZAMM-J. Appl. Math. Mechan.
,
94
(
5
), pp.
373
401
.
16.
Wheatcraft
,
S. W.
, and
Tyler
,
S. W.
,
1988
, “
An Explanation of Scale-Dependent Dispersivity in Heterogeneous Aquifers Using Concepts of Fractal Geometry
,”
Water. Resour. Res.
,
24
(
4
), pp.
566
578
.
17.
Tatom
,
F. B.
,
1995
, “
The Between Fractional Calculus and Fractals
,”
Fractals
,
3
(
1
), pp.
217
229
.
18.
Rocco
,
A.
, and
West
,
B. J.
,
1999
, “
Fractional Calculus and the Evolution of Fractal Phenomena
,”
Phys. A: Stat. Mech. Appl.
,
265
(
3–4
), pp.
535
546
.
19.
Atangana
,
A.
,
2017
, “
Fractal-Fractional Differentiation and Integration: Connecting Fractal Calculus and Fractional Calculus to Predict Complex System
,”
Chaos Solit. Fractals
,
102
(
Sept.
), pp.
396
406
.
20.
Carpinteri
,
A.
, and
Mainardi
,
F.
,
1997
,
Fractals and Fractional Calculus in Continuum Mechanics
,
Springer
,
New York
.
21.
Mandelbrot
,
B. B.
,
Evertsz
,
C. J.
, and
Gutzwiller
,
M. C.
,
2004
,
Fractals and Chaos: The ManDelbrot Set and Beyond
, Vol.
3
,
Springer
,
New York
.
22.
Tarasov
,
V. E.
,
2014
, “
Anisotropic Fractal Media by Vector Calculus in Non-Integer Dimensional Space
,”
J. Math. Phys.
,
55
(
8
), p.
083510
.
23.
Balankin
,
A. S.
,
2015
, “
A Continuum Framework for Mechanics of Fractal Materials I: From Fractional Space to Continuum With Fractal Metric
,”
Eur. Phys. J. B
,
88
(
4
), pp.
1
13
.
24.
Rubinstein
,
M.
, and
Colby
,
R.
,
2003
,
Polymer Physics
,
Oxford University Press
,
Oxford
.
25.
Davidson
,
J.
, and
Goulbourne
,
N.
,
2006
, “
A Nonaffine Network Model for Elastomers Undergoing Finite Deformations
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1784
1797
.
26.
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
,
2008
, “
Fractional Conservation of Mass
,”
Adv. Water Res.
,
31
(
10
), pp.
1377
1381
.
27.
Tarasov
,
V. E.
,
2011
,
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
,
Springer Science & Business Media
,
New York
.
28.
Oates
,
W.
,
Stanisaukis
,
E.
,
Pahari
,
B. R.
, and
Mashayekhi
,
S.
,
2021
, “
Entropy Dynamics Approach to Fractional Order Mechanics with Applications to Elastomers
,”
Proc. SPIE 11589, Behavior and Mechanics of Multifunctional Materials XV, 1158905
,
Long Beach, CA
,
Mar. 22
.
29.
Pahari
,
B. R.
, and
Oates
,
W.
,
2022
, “
Renyi Entropy and Fractional Order Mechanics for Predicting Complex Mechanics of Materials
,”
Proc. SPIE 12044, Behavior and Mechanics of Multifunctional Materials XVI, 1204408
,
Long Beach, CA
,
Apr. 20
.
30.
Jaynes
,
E. T.
,
1965
, “
Gibbs vs. Boltzmann Entropies
,”
Am. J. Phys.
,
33
(
5
), pp.
391
398
.
31.
Stanisauskis
,
E.
,
Mashayekhi
,
S.
,
Pahari
,
B.
,
Mehnert
,
M.
,
Steinmann
,
P.
, and
Oates
,
W.
,
2022
, “
Fractional and Fractal Order Effects in Soft Elastomers: Strain Rate and Temperature Dependent Nonlinear Mechanics
,”
Mech. Materials
,
172
, p.
104390
.
32.
Odibat
,
Z. M.
, and
Shawagfeh
,
N. T.
,
2007
, “
Generalized Taylor’s Formula
,”
Appl. Math. Comput.
,
186
(
1
), pp.
286
293
.
33.
Falconer
,
K.
,
2004
,
Fractal Geometry: Mathematical Foundations and Applications
,
John Wiley & Sons
,
West Sussex, UK
.
34.
Miles
,
P.
,
Hays
,
M.
,
Smith
,
R.
, and
Oates
,
W.
,
2015
, “
Bayesian Uncertainty Analysis of Finite Deformation Viscoelasticity
,”
Mech. Materials
,
91
, pp.
35
49
.
35.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
2001
, “
An Adaptive Metropolis Algorithm
,”
Bernoulli
,
7
(
2
), pp.
223
242
.
36.
Haario
,
H.
,
Laine
,
M.
,
Mira
,
A.
, and
Saksman
,
E.
,
2006
, “
DRAM: Efficient Adaptive MCMC
,”
Statist. Comput.
,
16
(
4
), pp.
339
354
.
37.
Smith
,
R.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
You do not currently have access to this content.