Abstract

Soft bioinspired fiber networks offer great potential in biomedical engineering and material design due to their adjustable mechanical behaviors. However, existing strategies to integrate modeling and manufacturing of bioinspired networks do not consider the intrinsic microstructural disorder of biopolymer networks, which limits the ability to tune their mechanical properties. To fill in this gap, we developed a method to generate computer models of aperiodic fiber networks mimicking type I collagen ready to be submitted for additive manufacturing. The models of fiber networks were created in a scripting language wherein key geometric features like connectivity, fiber length, and fiber cross section could be easily tuned to achieve desired mechanical behavior, namely, pretension-induced shear stiffening. The stiffening was first predicted using finite element software, and then a representative network was fabricated using a commercial 3D printer based on digital light processing technology using a soft resin. The stiffening response of the fabricated network was verified experimentally on a novel test device capable of testing the shear stiffness of the specimen under varying levels of uniaxial pretension. The resulting data demonstrated clear pretension-induced stiffening in shear in the fabricated network, with uniaxial pretension of 40% resulting in a factor of 2.65 increase in the small strain shear stiffness. The strategy described in this article addresses current challenges in modeling bioinspired fiber networks and can be readily integrated with advances in fabrication technology to fabricate materials truly replicating the mechanical response of biopolymer networks.

References

1.
Sanchez
,
C.
,
Arribart
,
H.
, and
Giraud Guille
,
M. M.
,
2005
, “
Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems
,”
Nat. Mater.
,
4
(
4
), pp.
277
288
.
2.
Janmey
,
P. A.
,
1998
, “
The Cytoskeleton and Cell Signaling: Component Localization and Mechanical Coupling
,”
Physiol. Rev.
,
78
(
3
), pp.
763
781
.
3.
Bausch
,
A.
, and
Kroy
,
K.
,
2006
, “
A Bottom-Up Approach to Cell Mechanics
,”
Nat. Phys.
,
2
(
4
), pp.
231
238
.
4.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
,
2007
,
Molecular Biology of the Cell
,
Taylor & Francis Group
,
New York
.
5.
Muiznieks
,
L. D.
, and
Keeley
,
F. W.
,
2013
, “
Molecular Assembly and Mechanical Properties of the Extracellular Matrix: A Fibrous Protein Perspective
,”
BBA-Mol. Basis Dis.
,
1832
(
7
), pp.
866
875
.
6.
Laurens
,
N.
,
Koolwijk
,
P. D.
, and
De Maat
,
M.
,
2006
, “
Fibrin Structure and Wound Healing
,”
J. Thromb. Haemost.
,
4
(
5
), pp.
932
939
.
7.
Licup
,
A. J.
,
Münster
,
S.
,
Sharma
,
A.
,
Sheinman
,
M.
,
Jawerth
,
L. M.
,
Fabry
,
B.
,
Weitz
,
D. A.
, and
MacKintosh
,
F. C.
,
2015
, “
Stress Controls the Mechanics of Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
31
), pp.
9573
9578
.
8.
Vahabi
,
M.
,
Sharma
,
A.
,
Licup
,
A. J.
,
Van Oosten
,
A. S.
,
Galie
,
P. A.
,
Janmey
,
P. A.
, and
MacKintosh
,
F. C.
,
2016
, “
Elasticity of Fibrous Networks Under Uniaxial Prestress
,”
Soft Matter
,
12
(
22
), pp.
5050
5060
.
9.
Picu
,
R.
,
Deogekar
,
S.
, and
Islam
,
M.
,
2018
, “
Poisson’s Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations
,”
J. Biomech. Eng.
,
140
(
2
), p.
021002
.
10.
Liang
,
L.
,
Jones
,
C.
,
Chen
,
S.
,
Sun
,
B.
, and
Jiao
,
Y.
,
2016
, “
Heterogeneous Force Network in 3d Cellularized Collagen Networks
,”
Phys. Biol.
,
13
(
6
), p.
066001
.
11.
Ronceray
,
P.
,
Broedersz
,
C. P.
, and
Lenz
,
M.
,
2016
, “
Fiber Networks Amplify Active Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
11
), pp.
2827
2832
.
12.
Burkel
,
B.
, and
Notbohm
,
J.
,
2017
, “
Mechanical Response of Collagen Networks to Nonuniform Microscale Loads
,”
Soft Matter
,
13
(
34
), pp.
5749
5758
.
13.
Grimmer
,
P.
, and
Notbohm
,
J.
,
2018
, “
Displacement Propagation in Fibrous Networks Due to Local Contraction
,”
ASME J. Biomech. Eng.
,
140
(
4
), p.
041011
.
14.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2002
, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
214
222
.
15.
Janmey
,
P. A.
,
McCormick
,
M. E.
,
Rammensee
,
S.
,
Leight
,
J. L.
,
Georges
,
P. C.
, and
MacKintosh
,
F. C.
,
2007
, “
Negative Normal Stress in Semiflexible Biopolymer Gels
,”
Nat. Mater
,
6
(
1
), pp.
48
51
.
16.
Brown
,
A. E.
,
Litvinov
,
R. I.
,
Discher
,
D. E.
,
Purohit
,
P. K.
, and
Weisel
,
J. W.
,
2009
, “
Multiscale Mechanics of Fibrin Polymer: Gel Stretching With Protein Unfolding and Loss of Water
,”
Science
,
325
(
5941
), pp.
741
744
.
17.
Vader
,
D.
,
Kabla
,
A.
,
Weitz
,
D.
, and
Mahadevan
,
L.
,
2009
, “
Strain-Induced Alignment in Collagen Gels
,”
PLoS One
,
4
(
6
), p.
e5902
.
18.
Münster
,
S.
,
Jawerth
,
L. M.
,
Leslie
,
B. A.
,
Weitz
,
J. I.
,
Fabry
,
B.
, and
Weitz
,
D. A.
,
2013
, “
Strain History Dependence of the Nonlinear Stress Response of Fibrin and Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
30
), pp.
12197
12202
.
19.
Kim
,
O. V.
,
Litvinov
,
R. I.
,
Weisel
,
J. W.
, and
Alber
,
M. S.
,
2014
, “
Structural Basis for the Nonlinear Mechanics of Fibrin Networks Under Compression
,”
Biomaterials
,
35
(
25
), pp.
6739
6749
.
20.
Jen
,
C. J.
, and
McIntire
,
L. V.
,
1982
, “
The Structural Properties and Contractile Force of a Clot
,”
Cell Motil. Cytoskel.
,
2
(
5
), pp.
445
455
.
21.
Taylor
,
C. A.
, and
Humphrey
,
J.
,
2009
, “
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3514
3523
.
22.
Ingber
,
D. E.
,
2006
, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
FASEB J.
,
20
(
7
), pp.
811
827
.
23.
Destrade
,
M.
,
Liu
,
Y.
,
Murphy
,
J. G.
, and
Kassab
,
G. S.
,
2012
, “
Uniform Transmural Strain in Pre-stressed Arteries Occurs at Physiological Pressure
,”
J. Theor. Biol.
,
303
, pp.
93
97
.
24.
Van Oosten
,
A. S.
,
Vahabi
,
M.
,
Licup
,
A. J.
,
Sharma
,
A.
,
Galie
,
P. A.
,
MacKintosh
,
F. C.
, and
Janmey
,
P. A.
,
2016
, “
Uncoupling Shear and Uniaxial Elastic Moduli of Semiflexible Biopolymer Networks: Compression-Softening and Stretch-Stiffening
,”
Sci. Rep.
,
6
, p.
19270
.
25.
Ban
,
E.
,
Wang
,
H.
,
Franklin
,
J. M.
,
Liphardt
,
J. T.
,
Janmey
,
P. A.
, and
Shenoy
,
V. B.
,
2019
, “
Strong Triaxial Coupling and Anomalous Poisson Effect in Collagen Networks
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
14
), pp.
6790
6799
.
26.
Hatami-Marbini
,
H.
, and
Rohanifar
,
M.
,
2021
, “
Nonlinear Mechanical Properties of Prestressed Branched Fibrous Networks
,”
Biophys. J.
,
120
(
3
), pp.
527
538
.
27.
Koh
,
C.
, and
Oyen
,
M.
,
2012
, “
Branching Toughens Fibrous Networks
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
74
82
.
28.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.
29.
Jang
,
K.-I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
, et al.,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
, p.
6566
.
30.
Jiang
,
Y.
, and
Wang
,
Q.
,
2016
, “
Highly-Stretchable 3d-Architected Mechanical Metamaterials
,”
Sci. Rep.-UK
,
6
, p.
34147
.
31.
Yan
,
D.
,
Chang
,
J.
,
Zhang
,
H.
,
Liu
,
J.
,
Song
,
H.
,
Xue
,
Z.
,
Zhang
,
F.
, and
Zhang
,
Y.
,
2020
, “
Soft Three-Dimensional Network Materials With Rational Bio-Mimetic Designs
,”
Nat. Commun.
,
11
, p.
1180
.
32.
Lee
,
P.
,
Lee
,
J.
,
Lee
,
H.
,
Yeo
,
J.
,
Hong
,
S.
,
Nam
,
K. H.
,
Lee
,
D.
,
Lee
,
S. S.
, and
Ko
,
S. H.
,
2012
, “
Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network
,”
Adv. Mater.
,
24
(
25
), pp.
3326
3332
.
33.
Wu
,
H.
,
Chan
,
G.
,
Choi
,
J. W.
,
Ryu
,
I.
,
Yao
,
Y.
,
McDowell
,
M. T.
,
Lee
,
S. W.
, et al.,
2012
, “
Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid–Electrolyte Interphase Control
,”
Nat. Nanotechnol.
,
7
(
5
), pp.
310
315
.
34.
Yu
,
C.
,
Masarapu
,
C.
,
Rong
,
J.
,
Wei
,
B.
, and
Jiang
,
H.
,
2009
, “
Stretchable Supercapacitors Based on Buckled Single-Walled Carbon-Nanotube Macrofilms
,”
Adv. Mater.
,
21
(
47
), pp.
4793
4797
.
35.
Kinstlinger
,
I. S.
,
Bastian
,
A.
,
Paulsen
,
S. J.
,
Hwang
,
D. H.
,
Ta
,
A. H.
,
Yalacki
,
D. R.
,
Schmidt
,
T.
, and
Miller
,
J. S.
,
2016
, “
Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone
,”
PLoS One
,
11
(
2
), p.
e0147399
.
36.
Zheng
,
X.
,
Deotte
,
J.
,
Alonso
,
M. P.
,
Farquar
,
G. R.
,
Weisgraber
,
T. H.
,
Gemberling
,
S.
,
Lee
,
H.
,
Fang
,
N.
, and
Spadaccini
,
C. M.
,
2012
, “
Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
125001
.
37.
Yeong
,
W.
,
Sudarmadji
,
N.
,
Yu
,
H.
,
Chua
,
C.
,
Leong
,
K.
,
Venkatraman
,
S.
,
Boey
,
Y.
, and
Tan
,
L.
,
2010
, “
Porous Polycaprolactone Scaffold for Cardiac Tissue Engineering Fabricated by Selective Laser Sintering
,”
Acta Biomater.
,
6
(
6
), pp.
2028
2034
.
38.
Xue
,
D.
,
Zhang
,
J.
,
Wang
,
Y.
, and
Mei
,
D.
,
2019
, “
Digital Light Processing-Based 3d Printing of Cell-Seeding Hydrogel Scaffolds With Regionally Varied Stiffness
,”
ACS Biomater. Sci. Eng.
,
5
(
9
), pp.
4825
4833
.
39.
Teng
,
C.-L.
,
Chen
,
J.-Y.
,
Chang
,
T.-L.
,
Hsiao
,
S.-K.
,
Hsieh
,
Y.-K.
,
Gorday
,
K. V.
,
Cheng
,
Y.-L.
, and
Wang
,
J.
,
2020
, “
Design of Photocurable, Biodegradable Scaffolds for Liver Lobule Regeneration Via Digital Light Process-Additive Manufacturing
,”
Biofabrication
,
12
(
3
), p.
035024
.
40.
Rens
,
R.
,
2019
, “
Theory of Rigidity Transitions in Disordered Materials
,” Ph.D. thesis,
University of Amsterdam
, Amsterdam, The Netherlands.
41.
Nguyen
,
D. S.
,
2019
, “
A Method for Generation of Random Lattice Structure for Additive Manufacturing
,”
2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
,
Macao, China
,
Dec. 15–18
,
IEEE
, pp.
1275
1279
.
42.
Cai
,
L.
,
Li
,
J.
,
Luan
,
P.
,
Dong
,
H.
,
Zhao
,
D.
,
Zhang
,
Q.
,
Zhang
,
X.
, et al.,
2012
, “
Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Single-Walled Carbon Nanotube Architecture
,”
Adv. Funct. Mater.
,
22
(
24
), pp.
5238
5244
.
43.
Lu
,
W.
,
Sun
,
J.
, and
Jiang
,
X.
,
2014
, “
Recent Advances in Electrospinning Technology and Biomedical Applications of Electrospun Fibers
,”
J. Mater. Chem. B
,
2
(
17
), pp.
2369
2380
.
44.
Xu
,
F.
, and
Zhu
,
Y.
,
2012
, “
Highly Conductive and Stretchable Silver Nanowire Conductors
,”
Adv. Mater.
,
24
(
37
), pp.
5117
5122
.
45.
Islam
,
M.
, and
Picu
,
R.
,
2018
, “
Effect of Network Architecture on the Mechanical Behavior of Random Fiber Networks
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081011
.
46.
Arzash
,
S.
,
Shivers
,
J. L.
,
Licup
,
A. J.
,
Sharma
,
A.
, and
MacKintosh
,
F. C.
,
2019
, “
Stress-Stabilized Subisostatic Fiber Networks in a Ropelike Limit
,”
Phys. Rev. E
,
99
(
4
), p.
042412
.
47.
Heussinger
,
C.
, and
Frey
,
E.
,
2006
, “
Stiff Polymers, Foams, and Fiber Networks
,”
Phys. Rev. Lett.
,
96
(
1
), p.
017802
.
48.
Kumar
,
S.
, and
Kurtz
,
S. K.
,
1993
, “
Properties of a Two-Dimensional Poisson-Voronoi Tesselation: A Monte-Carlo Study
,”
Mater. Charact.
,
31
(
1
), pp.
55
68
.
49.
Maxwell
,
J. C.
,
1864
, “
L. on the Calculation of the Equilibrium and Stiffness of Frames
,”
Lond Edinb. Dublin Philos. Mag. J. Sci.
,
27
(
182
), pp.
294
299
.
50.
Heussinger
,
C.
, and
Frey
,
E.
,
2007
, “
Force Distributions and Force Chains in Random Stiff Fiber Networks
,”
Eur. Phys. J. E
,
24
(
1
), pp.
47
53
.
51.
Picu
,
R.
,
2011
, “
Mechanics of Random Fiber Networks—A Review
,”
Soft Matter
,
7
(
15
), pp.
6768
6785
.
52.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F.
,
2003
, “
Deformation of Cross-Linked Semiflexible Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108102
.
53.
Wilhelm
,
J.
, and
Frey
,
E.
,
2003
, “
Elasticity of Stiff Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108103
.
54.
Feng
,
J.
,
Levine
,
H.
,
Mao
,
X.
, and
Sander
,
L. M.
,
2015
, “
Alignment and Nonlinear Elasticity in Biopolymer Gels
,”
Phys. Rev. E
,
91
(
4
), p.
042710
.
55.
Chen
,
Z.
,
Li
,
Z.
,
Li
,
J.
,
Liu
,
C.
,
Lao
,
C.
,
Fu
,
Y.
,
Liu
,
C.
,
Li
,
Y.
,
Wang
,
P.
, and
He
,
Y.
,
2019
, “
3D Printing of Ceramics: A Review
,”
J. Eur. Ceram. Soc.
,
39
(
4
), pp.
661
687
.
56.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sensor Actuat A-Phys.
,
121
(
1
), pp.
113
120
.
57.
Montemayor
,
L. C.
,
Meza
,
L. R.
, and
Greer
,
J. R.
,
2014
, “
Design and Fabrication of Hollow Rigid Nanolattices Via Two-p Hoton Lithography
,”
Adv. Eng. Mater.
,
16
(
2
), pp.
184
189
.
58.
Shuai
,
X.
,
Zeng
,
Y.
,
Li
,
P.
, and
Chen
,
J.
,
2020
, “
Fabrication of Fine and Complex Lattice Structure Al2o3 Ceramic by Digital Light Processing 3d Printing Technology
,”
J. Mater. Sci.
,
55
(
16
), pp.
6771
6782
.
59.
Graziosi
,
S.
,
Ballo
,
F. M.
,
Libonati
,
F.
, and
Senna
,
S.
,
2022
, “
3d Printing of Bending-Dominated Soft Lattices: Numerical and Experimental Assessment
,”
Rapid Prototyping J.
,
28
(
11
), pp.
51
64
.
60.
Aguirre
,
T. G.
,
Fuller
,
L.
,
Ingrole
,
A.
,
Seek
,
T. W.
,
Wheatley
,
B. B.
,
Steineman
,
B. D.
,
Donahue
,
T. L. H.
, and
Donahue
,
S. W.
,
2020
, “
Bioinspired Material Architectures From Bighorn Sheep Horncore Velar Bone for Impact Loading Applications
,”
Sci. Rep.
,
10
, p.
18916
.
61.
Shahsavari
,
A.
, and
Picu
,
R.
,
2013
, “
Size Effect on Mechanical Behavior of Random Fiber Networks
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3332
3338
.
62.
Shahsavari
,
A.
, and
Picu
,
R.
,
2012
, “
Model Selection for Athermal Cross-Linked Fiber Networks
,”
Phys. Rev. E
,
86
(
1
), p.
011923
.
63.
Tyznik
,
S.
, and
Notbohm
,
J.
,
2019
, “
Length Scale Dependent Elasticity in Random Three-Dimensional Fiber Networks
,”
Mech. Mater.
,
138
, p.
103155
.
64.
Sarkar
,
M.
, and
Notbohm
,
J.
,
2022
, “
Evolution of Force Chains Explains the Onset of Strain Stiffening in Fiber Networks
,”
ASME J. Appl. Mech.
,
89
(
11
), p.
111008
.
65.
Proestaki
,
M.
,
Burkel
,
B.
,
Galles
,
E. E.
,
Ponik
,
S. M.
, and
Notbohm
,
J.
,
2021
, “
Effect of Matrix Heterogeneity on Cell Mechanosensing
,”
Soft Matter
,
17
, pp.
10263
10273
.
66.
Sarkar
,
M.
, and
Notbohm
,
J.
,
2022
, “
Quantification of Errors in Applying Dic to Fiber Networks Imaged by Confocal Microscopy
,”
Exp. Mech.
,
62
(
7
), pp.
1175
1189
.
67.
International
,
A.
,
2005
, ASTM D 7078, Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail Shear Method, West Conshohocken, PA.
68.
Adams
,
D. O.
,
Moriarty
,
J. M.
,
Gallegos
,
A. M.
, and
Adams
,
D. F.
,
2007
, “
The V-Notched Rail Shear Test
,”
J. Compos. Mater.
,
41
(
3
), pp.
281
297
.
69.
Merson
,
J.
, and
Picu
,
R.
,
2020
, “
Size Effects in Random Fiber Networks Controlled by the Use of Generalized Boundary Conditions
,”
Int. J. Solids Struct.
,
206
, pp.
314
321
.
70.
Xu
,
Z.
,
Hensleigh
,
R.
,
Gerard
,
N. J.
,
Cui
,
H.
,
Oudich
,
M.
,
Chen
,
W.
,
Jing
,
Y.
, and
Zheng
,
X. R.
,
2021
, “
Vat Photopolymerization of Fly-Like, Complex Micro-Architectures With Dissolvable Supports
,”
Addit. Manuf.
,
47
, pp.
102321
.
You do not currently have access to this content.