Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Triple junction (TJ) migration is a plastic deformation mechanism in polycrystalline metals mediated by the interplay between neighboring grain boundaries (GBs). Compared with GB migration, the dynamic change of TJ structure during migration and its impact on subsequent TJ behavior is often overlooked. In this study, we explore the effect of dynamic TJ structure evolution on TJ deformation mechanism in a face-centered cubic metal Au model using molecular dynamics simulations. Our analysis reveals that the dislocation accumulation at TJ due to inconsistent disconnection nucleation from neighboring GBs can influence the stick-slip behavior of TJ migration. With the dynamic change of TJ structure, the velocity of TJ migration is gradually reduced, leading to a transition from TJ migration to dislocation emission from TJ. We have developed an energetic model to evaluate the critical stresses required for TJ migration and dislocation emission, providing an explanation of the competition between TJ migration and dislocation emission. Our findings deepen the understanding of TJ-governed plastic deformation mechanisms in polycrystalline materials.

References

1.
Velasco
,
M.
,
Van Swygenhoven
,
H.
, and
Brandl
,
C.
,
2011
, “
Coupled Grain Boundary Motion in a Nanocrystalline Grain Boundary Network
,”
Scr. Mater.
,
65
(
2
), pp.
151
154
.
2.
Barrales-Mora
,
L. A.
,
Gottstein
,
G.
, and
Shvindlerman
,
L. S.
,
2012
, “
Effect of a Finite Boundary Junction Mobility on the Growth Rate of Grains in Two-Dimensional Polycrystals
,”
Acta Mater.
,
60
(
2
), pp.
546
555
.
3.
Dynkin
,
N. K.
, and
Gutkin
,
M. Y.
,
2012
, “
Migration of Grain Boundaries in Free-Standing Nanocrystalline Thin Films
,”
Scr. Mater.
,
66
(
2
), pp.
73
76
.
4.
Deng
,
Q.
,
Gao
,
Y.
,
Liao
,
K.
,
Yi
,
X.
,
Huang
,
Z.
,
Li
,
Y.
, and
Luo
,
Z.
,
2022
, “
Energy Model of Transformation of Two-Time Decomposition Mode of Dislocation Structure at Triple Junction: Ultra-Fine Grained Materials
,”
Mech. Mater.
,
173
, p.
104438
.
5.
Chokshi
,
A. H.
,
2008
, “
Triple Junction Limited Grain Growth in Nanomaterials
,”
Scr. Mater.
,
59
(
7
), pp.
726
729
.
6.
Guo
,
Y.
,
Xu
,
T.
, and
Li
,
M.
,
2013
, “
Hierarchical Dislocation Nucleation Controlled by Internal Stress in Nanocrystalline Copper
,”
Appl. Phys. Lett.
,
102
(
24
), p.
241910
.
7.
Xing
,
Z.
,
Fan
,
H.
, and
Kang
,
G.
,
2022
, “
Molecular Dynamics Simulations on the Intergranular Crack Propagation of Magnesium Bicrystals
,”
Comput. Mater. Sci.
,
210
, p.
111058
.
8.
Kobayashi
,
S.
,
Inomata
,
T.
,
Kobayashi
,
H.
,
Tsurekawa
,
S.
, and
Watanabe
,
T.
,
2008
, “
Effects of Grain Boundary- and Triple Junction-Character on Intergranular Fatigue Crack Nucleation in Polycrystalline Aluminum
,”
J. Mater. Sci.
,
43
(
11
), pp.
3792
3799
.
9.
Qin
,
H.
,
Sorkin
,
V.
,
Pei
,
Q.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2020
, “
Failure in Two-Dimensional Materials: Defect Sensitivity and Failure Criteria
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
030802
.
10.
Molkeri
,
A.
,
Srivastava
,
A.
,
Osovski
,
S.
, and
Needleman
,
A.
,
2019
, “
Influence of Grain Size Distribution on Ductile Intergranular Crack Growth Resistance
,”
ASME J. Appl. Mech.
,
87
(
3
), p.
031008
.
11.
Li
,
J.
,
Fang
,
Q.
, and
Liu
,
Y.
,
2014
, “
Void Formation of Nanocrystalline Materials at the Triple Junction of Grain Boundaries
,”
Mater. Res. Express
,
1
(
1
), p.
015013
.
12.
Wang
,
L.
,
Zhou
,
J.
,
Zhang
,
S.
,
Liu
,
Y.
, and
Dong
,
S.
,
2014
, “
Effects of Accommodated Grain Boundary Sliding on Triple Junction Nanovoid Nucleation in Nanocrystalline Materials
,”
Mech. Mater.
,
71
, pp.
10
20
.
13.
Protasova
,
S. G.
,
Gottstein
,
G.
,
Molodov
,
D. A.
,
Sursaeva
,
V. G.
, and
Shvindlerman
,
L. S.
,
2001
, “
Triple Junction Motion in Aluminum Tricrystals
,”
Acta Mater.
,
49
(
13
), pp.
2519
2525
.
14.
Upmanyu
,
M.
,
Srolovitz
,
D. J.
,
Shvindlerman
,
L. S.
, and
Gottstein
,
G.
,
2002
, “
Molecular Dynamics Simulation of Triple Junction Migration
,”
Acta Mater.
,
50
(
6
), pp.
1405
1420
.
15.
Aramfard
,
M.
, and
Deng
,
C.
,
2014
, “
Influences of Triple Junctions on Stress-Assisted Grain Boundary Motion in Nanocrystalline Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
22
(
5
), p.
055012
.
16.
Li
,
R.
,
Zhou
,
J.
, and
Zhang
,
G.
,
2024
, “
A Unified Explanation for Variation of the Grain Growth Exponent Based on Grain Boundary Migration Kinetics
,”
J. Alloys Compd.
,
976
, p.
173159
.
17.
Poletaev
,
G.
,
Zorya
,
I.
, and
Rakitin
,
R.
,
2018
, “
Molecular Dynamics Study of Migration Mechanism of Triple Junctions of Tilt Boundaries in FCC Metals
,”
Comput. Mater. Sci
,
148
, pp.
184
189
.
18.
Wang
,
L.
,
Xin
,
T.
,
Kong
,
D.
,
Shu
,
X.
,
Chen
,
Y.
,
Zhou
,
H.
,
Teng
,
J.
,
Zhang
,
Z.
,
Zou
,
J.
, and
Han
,
X.
,
2017
, “
In Situ Observation of Stress Induced Grain Boundary Migration in Nanocrystalline Gold
,”
Scr. Mater.
,
134
, pp.
95
99
.
19.
Han
,
J.
,
Thomas
,
S. L.
, and
Srolovitz
,
D. J.
,
2018
, “
Grain-Boundary Kinetics: A Unified Approach
,”
Prog. Mater Sci.
,
98
, pp.
386
476
.
20.
Saidov
,
K.
,
Erofeev
,
I.
,
Yan
,
H.
,
Aabdin
,
Z.
, and
Mirsaidov
,
U.
,
2023
, “
Direct Atomic-Scale Observation of Thermally Driven Grain-Boundary Migration Associated With Triple-Junction Motion
,”
Phys. Rev. Mater.
,
7
(
6
), p.
063402
.
21.
Thomas
,
S. L.
,
Wei
,
C.
,
Han
,
J.
,
Xiang
,
Y.
, and
Srolovitz
,
D. J.
,
2019
, “
Disconnection Description of Triple-Junction Motion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
18
), pp.
8756
8765
.
22.
Xu
,
M.
,
Chen
,
K.
,
Cao
,
F.
,
Velasco
,
L.
,
Kaufman
,
T. M.
,
Ye
,
F.
,
Hahn
,
H.
,
Han
,
J.
,
Srolovitz
,
D. J.
, and
Pan
,
X.
,
2022
, “
Disconnection-Mediated Twin/Twin-Junction Migration in FCC Metals
,”
Acta Mater.
,
240
, p.
118339
.
23.
Yu
,
T.
,
Hughes
,
D. A.
,
Hansen
,
N.
, and
Huang
,
X.
,
2015
, “
In Situ Observation of Triple Junction Motion During Recovery of Heavily Deformed Aluminum
,”
Acta Mater.
,
86
, pp.
269
278
.
24.
Huang
,
Q.
,
Yang
,
W.
, and
Zhou
,
H.
,
2024
, “
Migration of Grain Boundary Triple Junctions in Nanocrystalline Metals Initiated by Accumulated Dislocations
,”
Int. J. Plast.
,
173
, p.
103872
.
25.
Zhang
,
L.
,
Han
,
J.
,
Xiang
,
Y.
, and
Srolovitz
,
D. J.
,
2017
, “
Equation of Motion for a Grain Boundary
,”
Phys. Rev. Lett.
,
119
(
24
), p.
246101
.
26.
Fischer
,
F. D.
,
Svoboda
,
J.
, and
Hackl
,
K.
,
2012
, “
Modelling the Kinetics of a Triple Junction
,”
Acta Mater.
,
60
(
12
), pp.
4704
4711
.
27.
Thomas
,
S. L.
,
King
,
A. H.
, and
Srolovitz
,
D. J.
,
2016
, “
When Twins Collide: Twin Junctions in Nanocrystalline Nickel
,”
Acta Mater.
,
113
, pp.
301
310
.
28.
Lin
,
B.
,
Jin
,
Y.
,
Hefferan
,
C. M.
,
Li
,
S. F.
,
Lind
,
J.
,
Suter
,
R. M.
,
Bernacki
,
M.
,
Bozzolo
,
N.
,
Rollett
,
A. D.
, and
Rohrer
,
G. S.
,
2015
, “
Observation of Annealing Twin Nucleation at Triple Lines in Nickel During Grain Growth
,”
Acta Mater.
,
99
, pp.
63
68
.
29.
Mao
,
H.
,
Liang
,
Q.
,
Zhang
,
Z.
,
Du
,
Y.
,
Shuai
,
X.
,
Zhang
,
G.
, and
Tang
,
S.
,
2023
, “
Strain-Induced Grain Boundary Migration and Grain Rotation in Polycrystalline Metals: Atomic- and Meso-Scale Phase Field Simulations
,”
Comput. Mater. Sci.
,
230
, p.
112531
.
30.
Chen
,
M.
,
Ma
,
E.
,
Hemker
,
K. J.
,
Sheng
,
H.
,
Wang
,
Y.
, and
Cheng
,
X.
,
2003
, “
Deformation Twinning in Nanocrystalline Aluminum
,”
Science
,
300
(
5623
), pp.
1275
1277
.
31.
Liao
,
X. Z.
,
Zhou
,
F.
,
Lavernia
,
E. J.
,
Srinivasan
,
S. G.
,
Baskes
,
M. I.
,
He
,
D. W.
, and
Zhu
,
Y. T.
,
2003
, “
Deformation Mechanism in Nanocrystalline Al: Partial Dislocation Slip
,”
Appl. Phys. Lett.
,
83
(
4
), pp.
632
634
.
32.
Li
,
X.
,
Long
,
H.
,
Zhang
,
J.
,
Ma
,
D.
,
Kong
,
D.
,
Lu
,
Y.
,
Sun
,
S.
, et al
,
2021
, “
Direct Observation of the Grain Boundaries Acting as Dislocation Sources in Nanocrystalline Platinum
,”
Mater. Charact.
,
181
, p.
111493
.
33.
Grochola
,
G.
,
Russo
,
S. P.
, and
Snook
,
I. K.
,
2005
, “
On Fitting a Gold Embedded Atom Method Potential Using the Force Matching Method
,”
J. Chem. Phys.
,
123
(
20
), p.
204719
.
34.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
35.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With Ovito—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
18
), p.
015012
.
36.
Gutkin
,
M. Y.
,
Ovid'ko
,
I. A.
, and
Skiba
,
N. V.
,
2005
, “
Emission of Partial Dislocations From Triple Junctions of Grain Boundaries in Nanocrystalline Materials
,”
J. Phys. D: Appl. Phys.
,
38
(
21
), pp.
3921
3925
.
37.
Li
,
J.
,
Chen
,
S.
,
Weng
,
G. J.
, and
Liu
,
C.
,
2019
, “
Stress-Assisted Grain-Rotation-Induced Dislocation Emission From Grain Boundaries in Nanocrystalline Face-Centered-Cubic Metals
,”
Philos. Mag. Lett.
,
99
(
12
), pp.
466
478
.
38.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
241
(
1226
), pp.
376
396
.
39.
Huang
,
Q.
,
Zhao
,
Q.
,
Zhou
,
H.
, and
Yang
,
W.
,
2022
, “
Misorientation-Dependent Transition Between Grain Boundary Migration and Sliding in FCC Metals
,”
Int. J. Plast.
,
159
, p.
103466
.
40.
Zhou
,
H.
,
Zhu
,
P.
,
Yang
,
W.
, and
Gao
,
H.
,
2022
, “
A Gradient Eshelby Force on Twinning Partial Dislocations and Associated Detwinning Mechanism in Gradient Nanotwinned Metals
,”
J. Mech. Phys. Solids
,
159
, p.
104746
.
41.
Hirth
,
J. P.
,
Lothe
,
J.
, and
Mura
,
T.
,
1983
, “
Theory of Dislocations (2nd ed.)
,”
ASME J. Appl. Mech.
,
50
(
2
), pp.
476
477
.
42.
Zhu
,
T.
,
L
,
J.
,
S
,
A.
,
L
,
A.
, and
Gall
,
K.
,
2008
, “
Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation
,”
Phys. Rev. Lett.
,
100
(
2
), p.
025502
.
43.
Xiao
,
J.
,
Wu
,
N.
,
Ojo
,
O.
, and
Deng
,
C.
,
2020
, “
Dislocation Nucleation in CoNiCrFeMn High Entropy Alloy
,”
Materialia
,
12
, p.
100749
.
44.
Warner
,
D. H.
, and
Curtin
,
W. A.
,
2009
, “
Origins and Implications of Temperature-Dependent Activation Energy Barriers for Dislocation Nucleation in Face-Centered Cubic Metals
,”
Acta Mater.
,
57
(
14
), pp.
4267
4277
.
45.
Wang
,
Y.
, and
Cai
,
W.
,
2023
, “
Stress-Dependent Activation Entropy in Thermally Activated Cross-Slip of Dislocations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
120
(
34
), p.
e2222039120
.
46.
Ryu
,
S.
,
Kang
,
K.
, and
Cai
,
W.
,
2011
, “
Entropic Effect on the Rate of Dislocation Nucleation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
13
), pp.
5174
5178
.
47.
Byggmästar
,
J.
,
Granberg
,
F.
, and
Nordlund
,
K.
,
2017
, “
Molecular Dynamics Simulations of Thermally Activated Edge Dislocation Unpinning From Voids in α-Fe
,”
Phys. Rev. Mater.
,
1
(
5
), p.
053603
.
48.
Cottrell
,
A. H.
, and
Dexter
,
D. L.
,
1954
, “
Dislocations and Plastic Flow in Crystals
,”
Am. J. Phys.
,
22
(
4
), pp.
242
243
.
49.
Zhang
,
Y.
,
Ding
,
K.
,
Stangebye
,
S.
,
Chen
,
D.
,
Kacher
,
J.
,
Pierron
,
O.
, and
Zhu
,
T.
,
2022
, “
Atomistic Modeling of Surface and Grain Boundary Dislocation Nucleation in FCC Metals
,”
Acta Mater.
,
237
, p.
118155
.
50.
Beltz
,
G. E.
, and
Freun
,
L. B.
,
1993
, “
On the Nucleation of Dislocations at a Crystal Surface
,”
Phys. Stat. Sol.
,
180
(
303
), pp.
303
313
.
51.
Ovid'ko
,
I. A.
, and
Sheinerman
,
A. G.
,
2017
, “
Grain Boundary Sliding, Triple Junction Disclinations and Strain Hardening in Ultrafine-Grained and Nanocrystalline Metals
,”
Int. J. Plast.
,
96
, pp.
227
241
.
52.
Zhang
,
Y.
,
Ding
,
K.
,
Gu
,
Y.
,
Chen
,
W.
,
Wang
,
Y. M.
,
El-Awady
,
J.
,
McDowell
,
D. L.
, and
Zhu
,
T.
,
2022
, “
Modeling of Microscale Internal Stresses in Additively Manufactured Stainless Steel
,”
Modell. Simul. Mater. Sci. Eng.
,
30
(
7
), p.
074001
.
53.
Liu
,
S.
,
Ma
,
X.
,
Li
,
L.
,
Zhang
,
L.
,
Trimby
,
P. W.
,
Liao
,
X.
,
Li
,
Y.
,
Zhao
,
Y.
, and
Zhu
,
Y.
,
2016
, “
Effect of Triple Junctions on Deformation Twinning in a Nanostructured Cu-Zn Alloy: A Statistical Study Using Transmission Kikuchi Diffraction
,”
Beilstein J. Nanotechnol.
,
7
, pp.
1501
1506
.
54.
Liu
,
C.
,
Lu
,
W.
,
Weng
,
G. J.
, and
Li
,
J.
,
2019
, “
A Cooperative Nano-Grain Rotation and Grain-Boundary Migration Mechanism for Enhanced Dislocation Emission and Tensile Ductility in Nanocrystalline Materials
,”
Mater. Sci. Eng. A
,
756
, pp.
284
290
.
55.
Wei
,
C.
,
Zhang
,
L.
,
Han
,
J.
,
Srolovitz
,
D. J.
, and
Xiang
,
Y.
,
2020
, “
Grain Boundary Triple Junction Dynamics: A Continuum Disconnection Model
,”
SIAM J. Appl. Math.
,
80
(
3
), pp.
1101
1122
.
56.
Cahn
,
J. W.
,
Mishin
,
Y.
, and
Suzuki
,
A.
,
2006
, “
Coupling Grain Boundary Motion to Shear Deformation
,”
Acta Mater.
,
54
(
19
), pp.
4953
4975
.
57.
Hua
,
A.
, and
Zhao
,
J.
,
2024
, “
A Unified Disconnection Model of Stress-Driven Grain Boundary Migration in Nanocrystalline Metals
,”
J. Mech. Phys. Solids
,
183
, p.
105515
.
58.
Li
,
X. T.
,
Tang
,
X. Z.
, and
Guo
,
Y. F.
,
2023
, “
Inhibition Effect of Segregation and Chemical Order on Grain Boundary Migration in Nbmotaw Multi-Principal Element Alloy
,”
Scr. Mater.
,
235
, p.
115632
.
59.
Chen
,
K.
,
Han
,
J.
,
Thomas
,
S. L.
, and
Srolovitz
,
D. J.
,
2019
, “
Grain Boundary Shear Coupling Is Not a Grain Boundary Property
,”
Acta Mater.
,
167
, pp.
241
247
.
You do not currently have access to this content.