Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Knitting is a technology that has a thousand-year-old history, and can be normally seen in our daily lives. The knitted structure is constructed by the interwoven yarns that are constrained by themselves, exhibiting extreme stretchability. The mechanical properties of the knit fabric also enable their integration with flexible electronic devices. Nonetheless, it is yet problematic to expose the mechanical behaviors of knitting intrinsically. This paper investigates the mechanical characteristics of knitted structures subjected to uniaxial stretching. The analysis includes a structural assessment of the unit cell, with a focus on half of the cell accounting for symmetry. Mechanical analysis for three distinct scenarios (without elongation and friction, with elongation and no friction, with elongation and friction) is also presented. The stress–strain curve of the knitted structure and the correlation between stiffness and geometric parameters are illustrated. Additionally, simulations are carried out based on the finite element analysis, yielding consistent results with the theoretical calculations. Subsequently, a uniaxial stretching experiment is conducted, and the experimental outcomes also verify the theoretical analysis. Our analysis successfully explains the mechanical behavior of knitted structures, and also provides a reference for studying knitted fabrics with other topologies.

References

1.
Chen
,
G.
,
Li
,
Y.
,
Bick
,
M.
, and
Chen
,
J.
,
2020
, “
Smart Textiles for Electricity Generation
,”
Chem. Rev.
,
120
(
8
), pp.
3668
3720
.
2.
Tabiei
,
A.
, and
Nilakantan
,
G.
,
2008
, “
Ballistic Impact of Dry Woven Fabric Composites: A Review
,”
ASME Appl. Mech. Rev.
,
61
(
1
), p.
010801
.
3.
Onal
,
L.
, and
Adanur
,
S.
,
2007
, “
Modeling of Elastic, Thermal, and Strength/Failure Analysis of Two-Dimensional Woven Composites—A Review
,”
ASME Appl. Mech. Rev.
,
60
(
1
), pp.
37
49
.
4.
Sevenois
,
R. D. B.
, and
Van Paepegem
,
W.
,
2015
, “
Fatigue Damage Modeling Techniques for Textile Composites: Review and Comparison With Unidirectional Composite Modeling Techniques
,”
ASME Appl. Mech. Rev.
,
67
(
2
), p.
020802
.
5.
Rossettos
,
J. N.
, and
Godfrey
,
T. A.
,
1998
, “
Damage Analysis in Fiber Composite Sheets and Uncoated Woven Fabrics
,”
ASME Appl. Mech. Rev.
,
51
(
6
), pp.
373
385
.
6.
Binienda
,
W. K.
, and
Goldberg
,
R. K.
,
2012
, “
Dynamic Testing and Characterization of Woven/Braided Polymer Composites: A Review
,”
ASME Appl. Mech. Rev.
,
64
(
5
), p.
050803
.
7.
Poincloux
,
S.
,
Adda-Bedia
,
M.
, and
Lechenault
,
F.
,
2018
, “
Geometry and Elasticity of a Knitted Fabric
,”
Phys. Rev. X
,
8
(
2
), p.
021075
.
8.
De Araujo
,
M.
,
Fangueiro
,
R.
, and
Hu
,
H.
,
2011
, “Weft-Knitted Structures for Industrial Applications,”
Advances in Knitting Technology
,
Elsevier
,
Oxford, UK
, pp.
136
170
.
9.
Peirce
,
F. T.
,
1947
, “
Geometrical Principles Applicable to the Design of Functional Fabrics
,”
Text. Res. J.
,
17
(
3
), pp.
123
147
.
10.
Hurd
,
J. C. H.
, and
Doyle
,
P. J.
,
1953
, “
Fundamental Aspects of the Design of Knitted Fabrics
,”
J. Text. Inst. Proc.
,
44
(
8
), pp.
P561
P578
.
11.
Xiong
,
J.
,
Chen
,
J.
, and
Lee
,
P. S.
,
2021
, “
Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface
,”
Adv. Mater.
,
33
(
19
), p.
2002640
.
12.
Maziz
,
A.
,
Concas
,
A.
,
Khaldi
,
A.
,
Stalhand
,
J.
,
Persson
,
N.-K.
, and
Jager
,
E. W. H.
,
2017
, “
Knitting and Weaving Artificial Muscles
,”
Sci. Adv.
,
3
(
1
), p.
e1600327
.
13.
Kononova
,
O.
,
Krasnikovs
,
A.
,
Dzelzitis
,
K.
,
Kharkova
,
G.
,
Vagel
,
A.
, and
Eiduks
,
M.
,
2011
, “
Modelling and Experimental Verification of Mechanical Properties of Cotton Knitted Fabric Composites
,”
Est. J. Eng.
,
17
(
1
), p.
39
.
14.
Heo
,
J. S.
,
Eom
,
J.
,
Kim
,
Y.-H.
, and
Park
,
S. K.
,
2018
, “
Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications
,”
Small
,
14
(
3
), p.
1703034
.
15.
Ding
,
C.
,
Wang
,
J.
,
Yuan
,
W.
,
Zhou
,
X.
,
Lin
,
Y.
,
Zhu
,
G.
,
Li
,
J.
,
Zhong
,
T.
,
Su
,
W.
, and
Cui
,
Z.
,
2022
, “
Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications
,”
ACS Appl. Mater. Interfaces
,
14
(
25
), pp.
29144
29155
.
16.
Heo
,
J. S.
,
Hossain
,
M. F.
, and
Kim
,
I.
,
2020
, “
Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review
,”
Sensors
,
20
(
14
), p.
3927
.
17.
Mishra
,
R.
, and
Petru
,
M.
,
2022
, “Application of Knitted Fabrics in Textile Structural Composites,”
Advanced Knitting Technology
,
Elsevier
,
Oxford, UK
, pp.
411
470
.
18.
Chen
,
G.
,
Xiao
,
X.
,
Zhao
,
X.
,
Tat
,
T.
,
Bick
,
M.
, and
Chen
,
J.
,
2022
, “
Electronic Textiles for Wearable Point-of-Care Systems
,”
Chem. Rev.
,
122
(
3
), pp.
3259
3291
.
19.
Cherenack
,
K.
,
Zysset
,
C.
,
Kinkeldei
,
T.
,
Munzenrieder
,
N.
, and
Troster
,
G.
,
2010
, “
Woven Electronic Fibers With Sensing and Display Functions for Smart Textiles
,”
Adv. Mater.
,
22
(
45
), pp.
5178
5182
.
20.
Shi
,
J.
,
Liu
,
S.
,
Zhang
,
L.
,
Yang
,
B.
,
Shu
,
L.
,
Yang
,
Y.
,
Ren
,
M.
, et al
,
2020
, “
Smart Textile-Integrated Microelectronic Systems for Wearable Applications
,”
Adv. Mater.
,
32
(
5
), p.
1901958
.
21.
Afroj
,
S.
,
Karim
,
N.
,
Wang
,
Z.
,
Tan
,
S.
,
He
,
P.
,
Holwill
,
M.
,
Ghazaryan
,
D.
,
Fernando
,
A.
, and
Novoselov
,
K. S.
,
2019
, “
Engineering Graphene Flakes for Wearable Textile Sensors Via Highly Scalable and Ultrafast Yarn Dyeing Technique
,”
ACS Nano
,
13
(
4
), pp.
3847
3857
.
22.
Seyedin
,
S.
,
Razal
,
J. M.
,
Innis
,
P. C.
,
Jeiranikhameneh
,
A.
,
Beirne
,
S.
, and
Wallace
,
G. G.
,
2015
, “
Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers
,”
ACS Appl. Mater. Interfaces
,
7
(
38
), pp.
21150
21158
.
23.
Chen
,
S.
,
Ding
,
C.
,
Lin
,
Y.
,
Wu
,
X.
,
Yuan
,
W.
,
Meng
,
X.
,
Su
,
W.
, and
Zhang
,
K. Q.
,
2020
, “
SERS-Active Substrate Assembled by Ag NW-Embedded Porous Polystyrene Fibers
,”
RSC Adv.
,
10
(
37
), pp.
21845
21851
.
24.
Choi
,
S.
,
Kwon
,
S.
,
Kim
,
H.
,
Kim
,
W.
,
Kwon
,
J. H.
,
Lim
,
M. S.
,
Lee
,
H. S.
, and
Choi
,
K. C.
,
2017
, “
Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays
,”
Sci. Rep.
,
7
(
1
), p.
6424
.
25.
Harada
,
S.
,
Honda
,
W.
,
Arie
,
T.
,
Akita
,
S.
, and
Takei
,
K.
,
2014
, “
Fully Printed, Highly Sensitive Multifunctional Artificial Electronic Whisker Arrays Integrated With Strain and Temperature Sensors
,”
ACS Nano
,
8
(
4
), pp.
3921
3927
.
26.
Zhang
,
X.
,
Wang
,
X.
,
Lei
,
Z.
,
Wang
,
L.
,
Tian
,
M.
,
Zhu
,
S.
,
Xiao
,
H.
,
Tang
,
X.
, and
Qu
,
L.
,
2020
, “
Flexible MXene-Decorated Fabric With Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances
,”
ACS Appl. Mater. Interfaces
,
12
(
12
), pp.
14459
14467
.
27.
Ray
,
T.
,
Choi
,
J.
,
Bandodkar
,
A. J.
,
Krishnan
,
S.
,
Gutruf
,
P.
,
Tian
,
L.
,
Ghaffari
,
R.
, and
Rogers
,
J. A.
,
2019
, “
Bio-Integrated Wearable Systems: A Comprehensive Review
,”
Chem. Rev.
,
119
(
8
), pp.
5461
5533
.
28.
Broza
,
Y. Y.
,
Zhou
,
X.
,
Yuan
,
M.
,
Qu
,
D.
,
Zheng
,
Y.
,
Vishinkin
,
R.
,
Khatib
,
M.
,
Wu
,
W.
, and
Haick
,
H.
,
2019
, “
Disease Detection With Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors
,”
Chem. Rev.
,
119
(
22
), pp.
11761
11817
.
29.
Jeong
,
S.-H.
,
Lee
,
Y.
,
Lee
,
M.-G.
,
Song
,
W.-J.
,
Park
,
J.-U.
, and
Sun
,
J.-Y.
,
2021
, “
Accelerated Wound Healing With an Ionic Patch Assisted by a Triboelectric Nanogenerator
,”
Nano Energy
,
79
, p.
105463
.
30.
Li
,
R.-Q.
,
Zheng
,
D.-W.
,
Han
,
Z.-Y.
,
Xie
,
T.-Q.
,
Zhang
,
C.
,
An
,
J.-X.
,
Xu
,
R.
,
Sun
,
Y.-X.
, and
Zhang
,
X.-Z.
,
2020
, “
mHealth: A Smartphone-Controlled, Wearable Platform for Tumour Treatment
,”
Mater. Today
,
40
, pp.
91
100
.
31.
Mostafalu
,
P.
,
Kiaee
,
G.
,
Giatsidis
,
G.
,
Khalilpour
,
A.
,
Nabavinia
,
M.
,
Dokmeci
,
M. R.
,
Sonkusale
,
S.
,
Orgill
,
D. P.
,
Tamayol
,
A.
, and
Khademhosseini
,
A.
,
2017
, “
A Textile Dressing for Temporal and Dosage Controlled Drug Delivery
,”
Adv. Funct. Mater.
,
27
(
41
), p.
1702399
.
32.
Wu
,
W.-L.
,
Hamada
,
H.
, and
Maekawa
,
Z.
,
1994
, “
Computer Simulation of the Deformation of Weft-Knitted Fabrics for Composite Materials
,”
J. Text. Inst.
,
85
(
2
), pp.
198
214
.
33.
Loginov
,
A. U.
,
Grishanov
,
S. A.
, and
Harwood
,
R. J.
,
2002
, “
Modelling the Load–Extension Behaviour of Plain-Knitted Fabric: Part I: A Unit-Cell Approach Towards Knitted-Fabric Mechanics
,”
J. Text. Inst.
,
93
(
3
), pp.
218
238
.
34.
Yuksel
,
C.
,
Kaldor
,
J. M.
,
James
,
D. L.
, and
Marschner
,
S.
,
2012
, “
Stitch Meshes for Modeling Knitted Clothing With Yarn-Level Detail
,”
ACM Trans. Graph.
,
31
(
4
), pp.
1
12
.
35.
Ramakrishna
,
S.
,
1997
, “
Characterization and Modeling of the Tensile Properties of Plain Weft-Knit Fabric-Reinforced Composites
,”
Compos. Sci. Technol.
,
57
(
1
), pp.
1
22
.
36.
Choi
,
K. F.
, and
Lo
,
T. Y.
,
2003
, “
An Energy Model of Plain Knitted Fabric
,”
Text. Res. J.
,
73
(
8
), pp.
739
748
.
37.
Choi
,
K. F.
, and
Lo
,
T. Y.
,
2006
, “
The Shape and Dimensions of Plain Knitted Fabric: A Fabric Mechanical Model
,”
Text. Res. J.
,
76
(
10
), pp.
777
786
.
38.
Dinh
,
T. D.
,
Weeger
,
O.
,
Kaijima
,
S.
, and
Yeung
,
S.-K.
,
2018
, “
Prediction of Mechanical Properties of Knitted Fabrics Under Tensile and Shear Loading: Mesoscale Analysis Using Representative Unit Cells and Its Validation
,”
Compos. Part B Eng.
,
148
, pp.
81
92
.
39.
Delavari
,
K.
, and
Dabiryan
,
H.
,
2021
, “
Mathematical and Numerical Simulation of Geometry and Mechanical Behavior of Sandwich Composites Reinforced With 1 × 1-Rib-Gaiting Weft-Knitted Spacer Fabric; Compressional Behavior
,”
Compos. Struct.
,
268
, p.
113952
.
40.
Liu
,
D.
,
Christe
,
D.
,
Shakibajahromi
,
B.
,
Knittel
,
C.
,
Castaneda
,
N.
,
Breen
,
D.
,
Dion
,
G.
, and
Kontsos
,
A.
,
2017
, “
On the Role of Material Architecture in the Mechanical Behavior of Knitted Textiles
,”
Int. J. Solids Struct.
,
109
, pp.
101
111
.
41.
Wadekar
,
P.
,
Perumal
,
V.
,
Dion
,
G.
,
Kontsos
,
A.
, and
Breen
,
D.
,
2020
, “
An Optimized Yarn-Level Geometric Model for Finite Element Analysis of Weft-Knitted Fabrics
,”
Comput. Aided Geom. Des.
,
80
, p.
101883
.
42.
Whitney
,
J. M.
, and
Epting
,
J. L.
,
1966
, “
Three-Dimensional Analysis of a Plain Knitted Fabric Subjected to Biaxial Stresses
,”
Text. Res. J.
,
36
(
2
), pp.
143
147
.
43.
Popper
,
P.
,
1966
, “
The Theoretical Behavior of a Knitted Fabric Subjected to Biaxial Stresses
,”
Text. Res. J.
,
36
(
2
), pp.
148
157
.
44.
Hong
,
H.
,
De Araujo
,
M. D.
,
Fangueiro
,
R.
, and
Ciobanu
,
O.
,
2002
, “
Theoretical Analysis of Load-Extension Properties of Plain Weft Knits Made From High Performance Yarns for Composite Reinforcement
,”
Text. Res. J.
,
72
(
11
), pp.
991
996
.
45.
Dusserre
,
G.
,
Balea
,
L.
, and
Bernhart
,
G.
,
2014
, “
Elastic Properties Prediction of a Knitted Composite With Inlaid Yarns Subjected to Stretching: A Coupled Semi-Analytical Model
,”
Compos. Part Appl. Sci. Manuf.
,
64
, pp.
185
193
.
46.
Ma
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Design and Application of ‘J-Shaped’ Stress–Strain Behavior in Stretchable Electronics: A Review
,”
Lab Chip
,
17
(
10
), pp.
1689
1704
.
47.
Fu
,
H.
,
Xu
,
S.
,
Xu
,
R.
,
Jiang
,
J.
,
Zhang
,
Y.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2015
, “
Lateral Buckling and Mechanical Stretchability of Fractal Interconnects Partially Bonded Onto an Elastomeric Substrate
,”
Appl. Phys. Lett.
,
106
(
9
), p.
091902
.
48.
Jang
,
K.-I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
, et al
,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
(
1
), p.
6566
.
49.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K.-I.
,
Luan
,
H.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
.
50.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
51.
Yanagawa
,
Y.
,
Kawabata
,
S.
,
Nakagawa
,
K.
,
Toyama
,
K.
, and
Kawai
,
N.
,
1970
, “
Theoretical Study on the Biaxial Tensile Properties of Single Tricot Warp Knitted Fabric with Open Lap
,”
J. Text. Mach. Soc. Jpn.
,
16
(
6
), pp.
216
228
.
You do not currently have access to this content.