Graphical Abstract Figure

Acoustic metamaterials composed of the coupled coiling and straight channels are found to realize the low-transmission flat band phenomenon, and an analytic coupled-mode model is established to derive the critical coupling condition to achieve this behavior

Graphical Abstract Figure

Acoustic metamaterials composed of the coupled coiling and straight channels are found to realize the low-transmission flat band phenomenon, and an analytic coupled-mode model is established to derive the critical coupling condition to achieve this behavior

Close modal

Abstract

Space-coiling acoustic metamaterials dominated by the Fano resonance are being widely exploited for simultaneous control of sound isolation and air ventilation, and they usually achieve complete sound mitigation at multiple isolated frequencies. Here, we theoretically discover and experimentally demonstrate the low-transmission flat-band phenomenon in channeling-type acoustic metamaterials. The metamaterial is constructed with coupled coiling and straight channels, both working in acoustic resonant states. An analytic coupled-mode model is established to capture the coupling interaction between resonant states supported by two channels. A critical coupling condition is derived from the model, which can lead to sextremely low sound transmission in a finite band rather than at isolated frequencies, as validated by both numerical simulations and experiments. We then demonstrate the generality of the flat-band behavior of low transmission by a systematic survey of the coupling of different order resonant modes. Finally, the flat-band effect is also found to exist in the extended model with the side-loaded coiling channel as verified experimentally.

References

1.
Ghaffarivardavagh
,
R.
,
Nikolajczyk
,
J.
,
Glynn Holt
,
R.
,
Anderson
,
S.
, and
Zhang
,
X.
,
2018
, “
Horn-Like Space-Coiling Metamaterials Toward Simultaneous Phase and Amplitude Modulation
,”
Nat. Commun.
,
9
(
1
), p.
1349
.
2.
Xie
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Konneker
,
A.
,
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2014
, “
Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface
,”
Nat. Commun.
,
5
(
1
), p.
5553
.
3.
Li
,
Y.
,
Jiang
,
X.
,
Li
,
R.-Q.
,
Liang
,
B.
,
Zou
,
X.-Y.
,
Yin
,
L.-L.
, and
Cheng
,
J.-C.
,
2014
, “
Experimental Realization of Full Control of Reflected Waves With Subwavelength Acoustic Metasurfaces
,”
Phys. Rev. Appl.
,
2
(
6
), p.
064002
.
4.
Lu
,
D.
, and
Liu
,
Z.
,
2012
, “
Hyperlenses and Metalenses for Far-Field Super-Resolution Imaging
,”
Nat. Commun.
,
3
(
1
), p.
1205
.
5.
Zhu
,
J.
,
Christensen
,
J.
,
Jung
,
J.
,
Martin-Moreno
,
L.
,
Yin
,
X.
,
Fok
,
L.
,
Zhang
,
X.
, and
Garcia-Vidal
,
F.
,
2011
, “
A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging
,”
Nat. Phys.
,
7
(
1
), pp.
52
55
.
6.
Cummer
,
S. A.
,
Popa
,
B. -I.
,
Schurig
,
D.
,
Smith
,
D. R.
,
Pendry
,
J.
,
Rahm
,
F. M.
, and
Starr
,
A.
,
2008
, “
Scattering Theory Derivation of a 3D Acoustic Cloaking Shell
,”
Phys. Rev. Lett.
,
100
(
2
), p.
024301
.
7.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.
8.
Dong
,
J.
,
Zhao
,
Y.
,
Cheng
,
Y.
, and
Zhou
,
X.
,
2018
, “
Underwater Acoustic Manipulation Using Solid Metamaterials With Broadband Anisotropic Density
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121007
.
9.
Yang
,
M.
, and
Sheng
,
P.
,
2017
, “
Sound Absorption Structures: From Porous Media to Acoustic Metamaterials
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
83
114
.
10.
Liu
,
C.
,
Shi
,
J.
,
Zhao
,
W.
,
Zhou
,
X.
,
Ma
,
C.
,
Peng
,
R.
,
Wang
,
M.
,
Hang
,
Z. H.
,
Liu
,
X.
,
Christensen
,
J.
,
Fang
,
N. X.
, and
Lai
,
Y.
,
2021
, “
Three-Dimensional Soundproof Acoustic Metacage
,”
Phys. Rev. Lett.
,
127
(
8
), p.
084301
.
11.
Xu
,
Z.-X.
,
Gao
,
H.
,
Ding
,
Y.-J.
,
Yang
,
J.
,
Liang
,
B.
, and
Cheng
,
J.-C.
,
2020
, “
Topology-Optimized Omnidirectional Broadband Acoustic Ventilation Barrier
,”
Phys. Rev. Appl.
,
14
(
5
), p.
054016
.
12.
Ma
,
G.
,
Yang
,
M.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2013
, “
Low-Frequency Narrow-Band Acoustic Filter With Large Orifice
,”
Appl. Phys. Lett.
,
103
(
1
), p.
011903
.
13.
Cheng
,
Y.
,
Zhou
,
C.
,
Yuan
,
B.
,
Wu
,
D.
,
Wei
,
Q.
, and
Liu
,
X.
,
2015
, “
Ultra-Sparse Metasurface for High Reflection of Low-Frequency Sound Based on Artificial Mie Resonances
,”
Nat. Mater.
,
14
(
10
), pp.
1013
1019
.
14.
Yang
,
M.
,
Meng
,
C.
,
Fu
,
C.
,
Li
,
Y.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2015
, “
Subwavelength Total Acoustic Absorption With Degenerate Resonators
,”
Appl. Phys. Lett.
,
107
(
10
), p.
104104
.
15.
Wang
,
X.
,
Luo
,
X.
,
Yang
,
B.
, and
Huang
,
Z.
,
2019
, “
Ultrathin and Durable Open Metamaterials for Simultaneous Ventilation and Sound Reduction
,”
Appl. Phys. Lett.
,
115
(
17
), p.
171902
.
16.
Lee
,
T.
,
Nomura
,
T.
,
Dede
,
E. M.
, and
Iizuka
,
H.
,
2019
, “
Ultrasparse Acoustic Absorbers Enabling Fluid Flow and Visible-Light Controls
,”
Phys. Rev. Appl.
,
11
(
2
), p.
024022
.
17.
Wu
,
X.
,
Au-Yeung
,
K. Y.
,
Li
,
X.
,
Roberts
,
R. C.
,
Tian
,
J.
,
Hu
,
C.
,
Huang
,
Y.
,
Wang
,
S.
,
Yang
,
Z.
, and
Wen
,
W.
,
2018
, “
High-Efficiency Ventilated Metamaterial Absorber at Low Frequency
,”
Appl. Phys. Lett.
,
112
(
10
), p.
103505
.
18.
Shen
,
C.
,
Xie
,
Y.
,
Li
,
J.
,
Cummer
,
S. A.
, and
Jing
,
Y.
,
2018
, “
Acoustic Metacages for Sound Shielding With Steady Air Flow
,”
J. Appl. Phys.
,
123
(
12
), p.
124501
.
19.
Xiang
,
X.
,
Tian
,
H.
,
Huang
,
Y.
,
Wu
,
X.
, and
Wen
,
W.
,
2021
, “
Manually Tunable Ventilated Metamaterial Absorbers
,”
Appl. Phys. Lett.
,
118
(
5
), p.
053504
.
20.
Ma
,
G.
,
Yang
,
M.
,
Xiao
,
S.
,
Yang
,
Z.
, and
Sheng
,
P.
,
2014
, “
Acoustic Metasurface With Hybrid Resonances
,”
Nat. Mater.
,
13
(
9
), pp.
873
878
.
21.
Merkel
,
A.
,
Theocharis
,
G.
,
Richoux
,
O.
,
Romero-García
,
V.
, and
Pagneux
,
V.
,
2015
, “
Control of Acoustic Absorption in One-Dimensional Scattering by Resonant Scatterers
,”
Appl. Phys. Lett.
,
107
(
24
), p.
244102
.
22.
Zhang
,
R.
,
Wang
,
G.
,
Zhou
,
X.
, and
Hu
,
G.
,
2022
, “
A Decoupling-Design Strategy for High Sound Absorption in Subwavelength Structures With Air Ventilation
,”
JASA Express Lett.
,
2
(
3
), p.
033602
.
23.
Nguyen
,
H.
,
Wu
,
Q.
,
Xu
,
X.
,
Chen
,
H.
,
Tracy
,
S.
, and
Huang
,
G.
,
2020
, “
Broadband Acoustic Silencer With Ventilation Based on Slit-Type Helmholtz Resonators
,”
Appl. Phys. Lett.
,
117
(
13
), p.
134103
.
24.
Dong
,
R.
,
Mao
,
D.
,
Wang
,
X.
, and
Li
,
Y.
,
2021
, “
Ultrabroadband Acoustic Ventilation Barriers via Hybrid-Functional Metasurfaces
,”
Phys. Rev. Appl.
,
15
(
2
), p.
024044
.
25.
Li
,
L.-J.
,
Zheng
,
B.
,
Zhong
,
L.-M.
,
Yang
,
J.
,
Liang
,
B.
, and
Cheng
,
J.-C.
,
2018
, “
Broadband Compact Acoustic Absorber With High-Efficiency Ventilation Performance
,”
Appl. Phys. Lett.
,
113
(
10
), p.
103501
.
26.
Kim
,
D.-Y.
, and
Ih
,
J.-G.
,
2020
, “
Wideband Reduction of In-Duct Noise Using Acoustic Metamaterial With Serially Connected Resonators Made With MPP and Cavities
,”
Appl. Phys. Lett.
,
116
(
25
), p.
251904
.
27.
Xiang
,
X.
,
Wu
,
X.
,
Li
,
X.
,
Wu
,
P.
,
He
,
H.
,
Mu
,
Q.
,
Wang
,
S.
,
Huang
,
Y.
, and
Wen
,
W.
,
2020
, “
Ultra-Open Ventilated Metamaterial Absorbers for Sound-Silencing Applications in Environment With Free Air Flows
,”
Extreme Mech. Lett.
,
39
, p.
100786
.
28.
Lee
,
T.
,
Nomura
,
T.
,
Dede
,
E. M.
, and
Iizuka
,
H.
,
2020
, “
Asymmetric Loss-Induced Perfect Sound Absorption in Duct Silencers
,”
Appl. Phys. Lett.
,
116
(
21
), p.
214101
.
29.
Kumar
,
S.
, and
Lee
,
H. P.
,
2020
, “
Labyrinthine Acoustic Metastructures Enabling Broadband Sound Absorption and Ventilation
,”
Appl. Phys. Lett.
,
116
(
13
), p.
134103
.
30.
Dong
,
R.
,
Sun
,
M.
,
Mo
,
F.
,
Mao
,
D.
,
Wang
,
X.
, and
Li
,
Y.
,
2021
, “
Recent Advances in Acoustic Ventilation Barriers
,”
J. Phys. D: Appl. Phys.
,
54
(
40
), p.
403002
.
31.
Jiménez
,
N.
,
Romero-García
,
V.
,
Pagneux
,
V.
, and
Groby
,
J.-P.
,
2017
, “
Rainbow-Trapping Absorbers: Broadband, Perfect and Asymmetric Sound Absorption by Subwavelength Panels for Transmission Problems
,”
Sci. Rep.
,
7
(
1
), p.
13595
.
32.
Chen
,
A.
,
Zhao
,
X.
,
Yang
,
Z.
,
Anderson
,
S.
, and
Zhang
,
X.
,
2022
, “
Broadband Labyrinthine Acoustic Insulator
,”
Phys. Rev. Appl.
,
18
(
6
), p.
064057
.
33.
Ghaffarivardavagh
,
R.
,
Nikolajczyk
,
J.
,
Anderson
,
S.
, and
Zhang
,
X.
,
2019
, “
Ultra-Open Acoustic Metamaterial Silencer Based on Fano-Like Interference
,”
Phys. Rev. B
,
99
(
2
), p.
024302
.
34.
Sun
,
M.
,
Fang
,
X.
,
Mao
,
D.
,
Wang
,
X.
, and
Li
,
Y.
,
2020
, “
Broadband Acoustic Ventilation Barriers
,”
Phys. Rev. Appl.
,
13
(
4
), p.
044028
.
35.
Zhang
,
H.-L.
,
Zhu
,
Y.-F.
,
Liang
,
B.
,
Yang
,
J.
,
Yang
,
J.
, and
Cheng
,
J.-C.
,
2017
, “
Omnidirectional Ventilated Acoustic Barrier
,”
Appl. Phys. Lett.
,
111
(
20
), p.
203502
.
36.
Dong
,
R.
,
Mao
,
D.
,
Zhu
,
Y.
,
Mo
,
F.
,
Wang
,
X.
, and
Li
,
Y.
,
2021
, “
A Ventilating Acoustic Barrier for Attenuating Broadband Diffuse Sound
,”
Appl. Phys. Lett.
,
119
(
26
), p.
263505
.
37.
Xu
,
Z.-X.
,
Zheng
,
B.
,
Yang
,
J.
,
Liang
,
B.
, and
Cheng
,
J.-C.
,
2021
, “
Machine-Learning-Assisted Acoustic Consecutive Fano Resonances: Application to a Tunable Broadband Low-Frequency Metasilencer
,”
Phys. Rev. Appl.
,
16
(
4
), p.
044020
.
38.
Nguyen
,
H.
,
Wu
,
Q.
,
Chen
,
H.
,
Chen
,
J.
,
Yu
,
Y.
,
Tracy
,
S.
, and
Huang
,
G.
,
2021
, “
A Fano-Based Acoustic Metamaterial for Ultra-Broadband Sound Barriers
,”
Proc. R. Soc. A
,
477
(
2248
), p.
20210024
.
39.
Tang
,
Y.
,
Liang
,
B.
, and
Lin
,
S.
,
2022
, “
Broadband Ventilated Meta-Barrier Based on the Synergy of Mode Superposition and Consecutive Fano Resonances
,”
J. Acoust. Soc. Am.
,
152
(
4
), pp.
2412
2418
.
40.
Xu
,
Z.-X.
,
Qiu
,
W.-J.
,
Cheng
,
Z.-Q.
,
Yang
,
J.
,
Liang
,
B.
, and
Cheng
,
J.-C.
,
2024
, “
Broadband Ventilated Sound Insulation Based on Acoustic Consecutive Multiple Fano Resonances
,”
Phys. Rev. Appl.
,
21
(
4
), pp.
044049
.
You do not currently have access to this content.