Abstract

This study investigates computationally the impact of particle size disparity and cohesion on force chain formation in granular media. The granular media considered in this study are bidisperse systems under uniaxial compression, consisting of spherical, frictionless particles that interact through a modified Hookean model. Force chains in granular media are characterized as networks of particles that meet specific criteria for particle stress and interparticle forces. The computational setup decouples the effects of particle packing on force chain formations, ensuring an independent assessment of particle size distribution and cohesion on force chain formation. The decoupling is achieved by characterizing particle packing through the radial density function, which enables the identification of systems with both regular and irregular packing. The fraction of particles in the force chains network is used to quantify the presence of the force chains. The findings show that particle size disparity promotes force chain formation in granular media with nearly regular packing (i.e., an almost-ordered system). However, as particle size disparities grow, it promotes irregular packing (i.e., disordered systems), leading to fewer force chains carrying larger loads than in ordered systems. Furthermore, it is observed that the increased cohesion in granular systems leads to fewer force chains irrespective of particle size or packing.

References

1.
Radjai
,
F.
,
Jean
,
M.
,
Moreau
,
J.-J.
, and
Roux
,
S.
,
1996
, “
Force Distributions in Dense Two-Dimensional Granular Systems
,”
Phys. Rev. Lett.
,
77
(
2
), pp.
274
277
.
2.
Radjai
,
F.
,
Wolf
,
D. E.
,
Jean
,
M.
, and
Moreau
,
J.-J.
,
1998
, “
Bimodal Character of Stress Transmission in Granular Packings
,”
Phys. Rev. Lett.
,
80
(
1
), pp.
61
64
.
3.
Schneider
,
T.
, and
Stoll
,
E.
,
1978
, “
Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions
,”
Phys. Rev. B
,
17
(
3
), pp.
1302
1322
.
4.
Wang
,
Y.
,
Wang
,
Y.
, and
Zhang
,
J.
,
2020
, “
Connecting Shear Localization With the Long-Range Correlated Polarized Stress Fields in Granular Materials
,”
Nat. Commun.
,
11
(
1
), pp.
1
7
.
5.
Zhang
,
L.
,
Wang
,
Y.
, and
Zhang
,
J.
,
2014
, “
Force-Chain Distributions in Granular Systems
,”
Phys. Rev. E
,
89
(
1
), p.
012203
.
6.
Li
,
G.
,
Cao
,
S.
,
Li
,
Y.
, and
Zhang
,
Z.
,
2016
, “
Load Bearing and Deformation Characteristics of Granular Spoils Under Unconfined Compressive Loading for Coal Mine Backfill
,”
Adv. Mater. Sci. Eng.
,
2016
(
1
).
7.
Tordesillas
,
A.
, and
Muthuswamy
,
M.
,
2009
, “
On the Modeling of Confined Buckling of Force Chains
,”
J. Mech. Phys. Solids
,
57
(
4
), pp.
706
727
.
8.
Tordesillas
,
A.
,
2007
, “
Force Chain Buckling, Unjamming Transitions and Shear Banding in Dense Granular Assemblies
,”
Philos. Mag.
,
87
(
32
), pp.
4987
5016
.
9.
Zhang
,
L.
,
Nguyen
,
N. G. H.
,
Lambert
,
S.
,
Nicot
,
F.
,
Prunier
,
F.
, and
Djeran-Maigre
,
I.
,
2017
, “
The Role of Force Chains in Granular Materials: From Statics to Dynamics
,”
Eur. J. Environ. Civ. Eng.
,
21
(
7–8
), pp.
874
895
.
10.
Wang
,
Y.
, and
Wang
,
Y.-L.
,
2017
, “
Liquefaction Characteristics of Gravelly Soil Under Cyclic Loading With Constant Strain Amplitude by Experimental and Numerical Investigations
,”
Soil Dyn. Earthquake Eng.
,
92
, pp.
388
396
.
11.
Buarque de Macedo
,
R.
,
Andò
,
E.
,
Joy
,
S.
,
Viggiani
,
G.
,
Pal
,
R. K.
,
Parker
,
J.
, and
Andrade
,
J. E.
,
2021
, “
Unearthing Real-Time 3d Ant Tunneling Mechanics
,”
Proc. Natl. Acad. Sci. USA
,
118
(
36
), p.
e2102267118
.
12.
Pal
,
R. K.
,
de Macedo
,
R. B.
, and
Andrade
,
J. E.
,
2021
, “
Tunnel Excavation in Granular Media: The Role of Force Chains
,”
Granular Matter
,
23
(
4
), pp.
1
14
.
13.
An
,
X.
, and
Huang
,
F.
,
2013
, “
Force Distribution/Transmission in Amorphous and Crystalline Packings of Spheres
,”
AIP Conference Proceedings, Vol. 1542
,
Sydney, Australia
,
July 8–12
,
American Institute of Physics
, pp.
413
416
.
14.
Antony
,
S. J.
,
2000
, “
Evolution of Force Distribution in Three-Dimensional Granular Media
,”
Phys. Rev. E
,
63
(
1
), p.
011302
.
15.
Chen
,
Q.
,
Qin
,
S.
, and
Wu
,
S.
,
2020
, “
Quantitative Study on the Contact Force and Force Chain Characteristics of Ore Particle Systems During Ore Drawing From a Single Drawpoint Under the Influence of a Flexible Barrier
,”
Geofluids
,
2020
(
1
).
16.
Dijksman
,
J. A.
,
Kovalcinova
,
L.
,
Ren
,
J.
,
Behringer
,
R. P.
,
Kramar
,
M.
,
Mischaikow
,
K.
, and
Kondic
,
L.
,
2018
, “
Characterizing Granular Networks Using Topological Metrics
,”
Phys. Rev. E
,
97
(
4
), p.
042903
.
17.
Kondic
,
L.
,
Goullet
,
A.
,
O’Hern
,
C. S.
,
Kramar
,
M.
,
Mischaikow
,
K.
, and
Behringer
,
R. P.
,
2012
, “
Topology of Force Networks in Compressed Granular Media
,”
Europhys. Lett.
,
97
(
5
), p.
54001
.
18.
Majmudar
,
T. S.
, and
Behringer
,
R. P.
,
2005
, “
Contact Force Measurements and Stress-Induced Anisotropy in Granular Materials
,”
Nature
,
435
(
7045
), pp.
1079
1082
.
19.
Sun
,
Q.
,
Jin
,
F.
,
Liu
,
J.
, and
Zhang
,
G.
,
2010
, “
Understanding Force Chains in Dense Granular Materials
,”
Int. J. Mod. Phys. B
,
24
(
29
), pp.
5743
5759
.
20.
Kondic
,
L.
,
Yan
,
Y.
,
Kramar
,
M.
, and
Mischaikow
,
K.
,
2009
, “
Topology of Force Chains in Dense Granular Materials
,”
APS Division of Fluid Dynamics Meeting Abstracts
,
Minneapolis, MN
,
Nov. 22–24
, Vol. 62, p.
AU-004
.
21.
Binaree
,
T.
,
Preechawuttipong
,
I.
, and
Azéma
,
E.
,
2019
, “
Effects of Particle Shape Mixture on Strength and Structure of Sheared Granular Materials
,”
Phys. Rev. E
,
100
(
1
), p.
012904
.
22.
Azéma
,
E.
, and
Radjai
,
F.
,
2012
, “
Force Chains and Contact Network Topology in Sheared Packings of Elongated Particles
,”
Phys. Rev. E
,
85
(
3
), p.
031303
.
23.
Rosenbaum
,
E.
,
Massoudi
,
M.
, and
Dayal
,
K.
,
2019
, “
Effects of Polydispersity on Structuring and Rheology in Flowing Suspensions
,”
J. Appl. Mech.
,
86
(
8
), p.
081001
.
24.
Rosenbaum
,
E.
,
Massoudi
,
M.
, and
Dayal
,
K.
,
2019
, “
Surfactant Stabilized Bubbles Flowing in a Newtonian Fluid
,”
Math. Mech. Solids
,
24
(
12
), pp.
3823
3842
.
25.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
In’t Veld
,
P. J.
, et al.,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.
26.
Ardanza-Trevijano
,
S.
,
Zuriguel
,
I.
,
Arévalo
,
R.
, and
Maza
,
D.
,
2013
, “
Topological Analysis of Tapped Granular Media Using Persistent Homology
,”
Phys. Rev. E
,
89
(
5
), p. 052212.
27.
Bassett
,
D. S.
,
Owens
,
E. T.
,
Porter
,
M. A.
,
Manning
,
M. L.
, and
Daniels
,
K. E.
,
2015
, “
Extraction of Force-Chain Network Architecture in Granular Materials Using Community Detection
,”
Soft Matter
,
11
(
14
), pp.
2731
2744
.
28.
Huang
,
Y.
,
2015
, “
A Community Detection Method for Force Chain Characterization in Three Dimensional Granular Packings
,” Master’s thesis,
North Carolina State University
,
Raleigh, NC
.
29.
Krishnaraj
,
K. P.
, and
Nott
,
P. R.
,
2020
, “
Coherent Force Chains in Disordered Granular Materials Emerge From a Percolation of Quasilinear Clusters
,”
Phys. Rev. Lett.
,
124
(
19
), p.
198002
.
30.
Nauer
,
S.
,
Böttcher
,
L.
, and
Porter
,
M. A.
,
2020
, “
Random-Graph Models and Characterization of Granular Networks
,”
J. Complex Networks
,
8
(
5
), p.
cnz037
.
31.
Peters
,
J. F.
,
Muthuswamy
,
M.
,
Wibowo
,
J.
, and
Tordesillas
,
A.
,
2005
, “
Characterization of Force Chains in Granular Material
,”
Phys. Rev. E
,
72
(
4
), p.
041307
.
32.
Wang
,
J.-P.
,
2017
, “
Force Transmission Modes of Non-cohesive and Cohesive Materials at the Critical State
,”
Materials
,
10
(
9
), p.
1014
.
33.
Buarque de Macedo
,
R.
,
Monfared
,
S.
,
Karapiperis
,
K.
, and
Andrade
,
J. E.
,
2023
, “
What Is Shape? Characterizing Particle Morphology With Genetic Algorithms and Deep Generative Models
,”
Granular Matter
,
25
(
1
), p.
2
.
34.
Desai
,
S.
,
Shrivastava
,
A.
,
D’Elia
,
M.
,
Najm
,
H. N.
, and
Dingreville
,
R.
,
2024
, “
Trade-Offs in the Latent Representation of Microstructure Evolution
,”
Acta Mater.
,
263
, p.
119514
.
35.
Shrivastava
,
A.
,
Liu
,
J.
,
Dayal
,
K.
, and
Noh
,
H. Y.
,
2022
, “
Predicting Peak Stresses in Microstructured Materials Using Convolutional Encoder–Decoder Learning
,”
Math. Mech. Solids
,
27
(
7
), pp.
1336
1357
.
36.
Shrivastava
,
A.
,
Kalaswad
,
M.
,
Custer
,
J. O.
,
Adams
,
D. P.
, and
Najm
,
H. N.
,
2024
, “
Bayesian Optimization for Stable Properties Amid Processing Fluctuations in Sputter Deposition
,”
J. Vac. Sci. Technol. A
,
42
(
3
), p.
033408
.
You do not currently have access to this content.