The fracture mechanics of plates and shells under membrane, bending, twisting, and shearing loads are reviewed, starting with the crack tip fields for plane stress, Kirchhoff, and Reissner theories. The energy release rate for each of these theories is calculated and is used to determine the relation between the Kirchhoff and Reissner theories for thin plates. For thicker plates, this relationship is explored using three-dimensional finite element analysis. The validity of the application of two-dimensional (plate theory) solutions to actual three-dimensional objects is analyzed and discussed. Crack tip fields in plates undergoing large deflection are analyzed using von Ka´rma´n theory. Solutions for cracked shells are discussed as well. A number of computational methods for determining stress intensity factors in plates and shells are discussed. Applications of these computational approaches to aircraft structures are examined. The relatively few experimental studies of fracture in plates under bending and twisting loads are also reviewed. There are 101 references cited in this article.

1.
Potyondy, D., 1993, “A Software Framework for Simulating Curvilinear Crack Growth in Pressurized Thin Shells,” Ph.D., thesis, Cornell University, School of Civil and Environmental Engineering, Report No. 93–5.
2.
Potyondy, D., Wawrzynek, P., and Ingraffea, A., 1994, “Discrete Crack Growth Analysis Methodology for Through Cracks in Pressurized Fuselage Structures,” Harris, C., ed. FAA-NASA Int. Symp. on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance 2, pp. 581–601, NASA CP3274.
3.
Harris, C.E., Newman, J.C., Piascik, R.S., and Starnes, J.H., 1997, “
Analytical Methodology for Predicting the Onset of Widespread Fatigue Damage in Fuselage Structure,” FAA-NASA Symp. on the Continued Airworthiness of Aircraft Structures, pp. 63–88 DOT/FAA/AR-97/2.
4.
Kirchhoff
,
G.
,
1850
, “
U¨ber das gleichgewicht und die bewegung einer elastischen scheibe
,”
J. Reine Angew. Math.
40
, pp.
51
88
.
5.
Sih
,
G.
,
Paris
,
P.
, and
Erdogan
,
F.
,
1962
, “
Crack-tip Stress-intensity Factors for Plane Extension and Plane Bending Problems
,”
ASME J. Appl. Mech.
29
, pp.
306
312
.
6.
Williams
,
M.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
24
, pp.
109
114
.
7.
Williams
,
M.
,
1961
, “
The Bending Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
28
, pp.
78
82
.
8.
Hui
,
C.Y.
, and
Zehnder
,
A.
,
1993
, “
A Theory for the Fracture of Thin Plates Subjected to Bending and Twisting Moments
,”
Int. J. Fract.
61
, pp.
211
229
.
9.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
67
, pp.
69
77
.
10.
Reissner
,
E.
,
1947
, “
On Bending of Elastic Plates
,”
Q. Appl. Math.
5
, pp.
55
68
.
11.
Knowles
,
J.
, and
Wang
,
N.
,
1960
, “
On the Bending of an Elastic Plate Containing a Crack
,”
J. Math. Phys.
39
, pp.
223
236
.
12.
Wang
,
N.
,
1968
, “
Effects of Plate Thickness on the Bending of an Elastic Plate Containing a Crack
,”
J. Math. Phys.
47
, pp.
371
390
.
13.
Hartranft
,
R.J.
, and
Sih
,
G.C.
1968
, “
Effect of Plate Thickness on the Bending Stress Distribution Around Through Cracks
,”
J. Math. Phys.
47
, pp.
276
291
.
14.
Wang
,
N.
1970
, “
Twisting of an Elastic Plate containing a Crack
,”
Int. J. Fract. Mech.
6
, pp.
367
378
.
15.
Tamate, O., 1975, “A Theory of Dislocations in the Plate Under Flexure with Application to Crack Problems,” Tech. Report Tohoku University, Technology Report 40(1), 67–88.
16.
Delale
,
F.
, and
Erdogan
,
F.
,
1981
, “
Line-Spring Model for Surface Cracks in a Reissner Plate
,”
Int. J. Eng. Sci.
19
, pp.
1331
1340
.
17.
Irwin
,
G.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
24
, pp.
361
364
.
18.
Rice
,
J.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
35
, pp.
379
386
.
19.
Viz
,
M.
,
Potyondy
,
D.
,
Zehnder
,
A.
,
Rankin
,
C.
, and
Riks
,
E.
,
1995
, “
Computation of Membrane and Bending Stress Intensity Factors for Thin, Cracked Plates
,”
Int. J. Fract.
72
, pp.
21
38
.
20.
Lemaitre
, Jr.,
J.
,
Turbat
,
A.
, and
Loubet
,
R.
1977
, “
Fracture Mechanics Analysis of Pressurized Cracked Shallow Shells
,”
Eng. Fract. Mech.
9
, pp.
443
460
.
21.
Young
,
M.
, and
Sun
,
C.
,
1993
, “
On the Strain Energy Release Rate for a Cracked Plate Subjected to Out-of-Plane Bending Moment
,”
Int. J. Fract.
60
, pp.
227
247
.
22.
Young
,
M.
, and
Sun
,
C.
,
1993
, “
Cracked Plates Subjected to Out-of-Plane Tearing Loads
,”
Int. J. Fract.
60
, pp.
1
18
.
23.
Simmonds
,
J.
, and
Duva
,
J.
,
1981
, “
Thickness Effects are Minor in the Energy Release Rate Integral for Bent Plates Containing Elliptic Holes or Cracks
,”
ASME J. Appl. Mech.
48
, pp.
320
326
.
24.
Joseph
,
P.F.
, and
Erdogan
,
F.
,
1989
, “
Surface Crack Problems in Plates
,
Int. J. Fract.
41
, pp.
105
131
.
25.
Murakami Y (1987), Stress Intensity Factors Handbook, Volume 2, Pergamon Press, Elmsford, New York.
26.
Zehnder
,
A.
, and
Hui
,
C.Y.
,
1994
, “
Stress Intensity Factors for Plate Bending and Shearing Problems
,”
ASME J. Appl. Mech.
61
, pp.
719
722
.
27.
Hasebe
,
N.
,
Matsuura
,
S.
, and
Kondo
N.
,
1984
, “
Stress Analysis of a Strip with a Step and a Crack
,”
Eng. Fract. Mech.
20
, pp.
447
462
.
28.
Joseph
,
PF.
, and
Erdogan
F.
,
1991
, “
Bending of a Thin Reissner Plate with a Through Crack
,”
ASME J. Appl. Mech.
58
, pp.
842
846
.
29.
Murthy
,
M.
,
Raju
,
K.
, and
Viswanath
,
S.
,
1981
, “
On the Bending Stress Distribution at the Tip of a Stationary Crack from Reissner’s Theory
,”
Int. J. Fract.
17
, pp.
537
552
.
30.
Boduroglu
,
H.
, and
Erdogan
,
F.
,
1983
, “
Internal and Edge Cracks in a Plate of Finite Width Under Bending
,”
ASME J. Appl. Mech.
50
, pp.
621
629
.
31.
Sih, G.C. 1977, “Mechanics of Fracture 3: Plates and Shells with Cracks,” Noordhoff International, Leyden.
32.
Alwar
,
R.S.
, and
Ramachandran
,
K.N.N.
,
1983
, “
Three-Dimensional Finite Element Analysis of Cracked Thick Plates in Bending
,”
Int. J. Numer. Methods Eng.
19
, pp.
293
303
.
33.
Barsoum
,
R.S.
,
1976
, “
A Degenerate Solid Element for Linear Fracture Analysis of Plate Bending and General Shells
,”
Int. J. Numer. Methods Eng.
10
, pp.
551
564
.
34.
Rhee
,
H.C.
, and
Atluri
,
S.N.
,
1982
, “
Hybrid Stress Finite Element Analysis of Plate Bending and General Shells
,”
Int. J. Numer. Methods Eng.
18
, pp.
259
271
.
35.
Zucchini
,
A.
,
Hui
,
C.Y.
, and
Zehnder
,
A.T.
,
2000
, “
Crack Tip Stress Fields for Thin Plates in Bending, Shear and Twisting: A Comparison of Plate Theory and Three Dimensional Elasticity Theory
,”
Int. J. Fract.
104
, pp.
387
407
.
36.
Mullinix
,
B.R.
, and
Smith
,
C.W.
,
1974
, “
Distribution of Local Stresses Across the Thickness of Cracked Plates
,”
Int. J. Fract.
10
, pp.
337
352
.
37.
Hui
,
C.Y.
,
Zehnder
A.T.
, and
Potdar
,
Y.K.
,
1998
, “
Williams Meets Von-Karman: Mode Coupling and Nonlinearity in the Fracture of Thin Plates
,”
Int. J. Fract.
93
, pp.
409
429
.
38.
von Ka´rma´n, T., 1910, Festigkeitsprobleme in maschinenbau, Encyklopadia der Mathematischen Wissenschaften, IV, B.G. Teubner, Leipzig, Chapter 27, pp. 311–385.
39.
Johnson, W., 1986, “Stress Analysis of the Cracked Lap Shear Specimen: An ASTM Round Robin,” Tech. report, National Aeronautics and Space Administration, NASA TM 89006.
40.
Frisch
,
J.
,
1961
, “
Fracture of Flat and Curved Aluminum Sheets with Stiffeners Parallel to the Crack
,”
ASME J. Basic Eng.
83
, pp.
32
38
.
41.
Folias
,
E.
,
1970
, “
On the Theory of Fracture of Curved Sheets
,”
Eng. Fract. Mech.
2
, pp.
151
164
.
42.
Folias
,
E.
,
1965
, “
A Finite Line Crack in a Pressurized Spherical Shell
,”
Int. J. Fract. Mech.
1
, pp.
20
46
.
43.
Folias
,
E.
,
1965
, “
An Axial Crack in a Pressurized Cylindrical Shell
,”
Int. J. Fract. Mech.
1
, pp.
104
113
.
44.
Folias
,
E.
,
1967
, “
A Circumferential Crack in a Pressurized Cylindrical Shell
,”
Int. J. Fract. Mech.
3
, pp.
1
11
.
45.
Folias
,
E.
,
1969
, “
On the Effect of Initial Curvature on Cracked Flat Sheets
,”
Int. J. Fract. Mech.
5
, pp.
327
346
.
46.
Copley
,
I.
, and
Sanders
,
J.
,
1969
, “
A Longitudinal Crack in a Cylindrical Shell Under Internal Pressure
,”
Int. J. Fract. Mech.
5
, pp.
117
131
.
47.
Duncan
,
M.
, and
Sanders
,
J.
,
1969
, “
The Effect of a Circumferential Stiffener on the Stress in a Pressurized Cylindrical Shell with a Longitudinal Crack
,”
Int. J. Fract. Mech.
5
, pp.
133
155
.
48.
Yashi
,
O.S.
, and
Erdogan
,
F.
,
1983
, “
A Cylindrical Shell with an Arbitrarily Oriented Crack
,”
Int. J. Solids Struct.
19
, pp.
955
972
.
49.
Alabi
,
J.A.
, and
Sanders
,
J.L.
,
1985
, “
Circumferential Crack at the End of a Fixed Pipe
,”
Eng. Fract. Mech.
22
, pp.
609
616
.
50.
Alabi
,
J.A.
,
1987
, “
Circumferential Crack at the Fixed End of a Cylinder in Flexure
,”
ASME J. Appl. Mech.
54
, pp.
861
865
.
51.
Erdogan
,
F.
, and
Ratwani
,
M.
,
1972
, “
A Circumferential Crack in a Cylindrical Shell Under Torsion
,”
Int. J. Fract.
8
, pp.
87
95
.
52.
Xie
,
Y.J.
,
2000
, “
An Analytical Method on Circumferential Periodic Cracked Pipes and Shells
,”
Int. J. Solids Struct.
37
, pp.
5189
5201
.
53.
Simmonds
,
J.G.
,
Bradley
,
M.R.
, and
Nicholson
,
J.W.
,
1978
, “
Stress-Intensity Factors for Arbitrarily Oriented Cracks in Shallow Shells
,”
ASME J. Appl. Mech.
45
, pp.
135
141
.
54.
Huang
,
N.C.
,
Li
,
Y.C.
, and
Russell
,
S.G.
,
1997
, “
Fracture Mechanics of Plates and Shells Applied to Fail-safe Analysis of Fuselage–Part I: Theory
,”
Theor Appl. Mech.
27
, pp.
221
236
.
55.
Erdogan
,
F.
, and
Kibler
,
J.
,
1969
, “
Cylindrical and Spherical Shells with Cracks
,”
Theor Appl. Mech.
5
, pp.
229
237
.
56.
Erdogan
,
F.
, and
Ratwani
,
M.
,
1972
, “
Fracture of Cylindrical and Spherical Shells Containing a Crack
,”
Nucl. Eng. Des.
20
, pp.
265
286
.
57.
Smith
,
D.
, and
Smith
,
C.
,
1970
, “
A Photoelastic Evaluation of the Influence of Closure and Other Effects Upon the Local Bending Stresses in Cracked Plates
,”
Theor Appl. Mech.
6
, pp.
305
318
.
58.
Jones
,
D.
, and
Swedlow
,
J.
,
1975
, “
The Influence of Crack Closure and Elasto-plastic Flow on the Bending of a Cracked Plate
,”
Int. J. Fract.
11
, pp.
897
914
.
59.
Young
,
M.
, and
Sun
,
C.
,
1992
, “
Influence of Crack Closure on the Stress Intensity Factor in Bending Plates: A Classical Plate solution
,”
Int. J. Fract.
55
, pp.
81
93
.
60.
Heming
,
F.S.
,
1980
, “
Sixth Order Analysis of Crack Closure in Bending of an Elastic Plate
,”
Int. J. Fract.
16
, pp.
289
304
.
61.
Alwar
,
R.S.
, and
Ramachandran
,
K.N.N.
,
1983
, “
Influence of Crack Closure on the Stress Intensity Factor for Plates Subjected to Bending: A 3D Finite Element Analysis
,”
Eng. Fract. Mech.
17
, pp.
323
333
.
62.
Murthy
,
M.V.V.
,
Viswanath
,
V.K.M.S.
, and
Rao
,
K.P.
,
1988
, “
A Two-Dimensional Model for Crack Closure Effect in Plates Under Bending
,”
Eng. Fract. Mech.
29
, pp.
77
117
.
63.
Delale
,
F.
, and
Erdogan
,
F.
,
1979
, “
The Effect of Transverse Shear in a Cracked Plate Under Skew-Symmetric Loading
,”
ASME J. Appl. Mech.
46
, pp.
618
624
.
64.
Slepyan
,
L.I.
,
Dempsey.
J.P.
, and
Shekhtman
,
I.I.
,
1995
, “
Asymptotic Solutions for Crack Closure in an Elastic Plate Under Combined Extension and Bending
,”
J. Mech. Phys. Solids
,
43
, pp.
1727
1749
.
65.
Dempsey
,
J.P.
,
Shektman
,
I.I.
, and
Slepyan
,
L.I.
,
1998
, “
Closure of a Through Crack in a Plate Under Bending
,”
Int. J. Solids Struct.
35
, pp.
4077
4089
.
66.
Viz, M.J., Zehnder, A.T., and Bamford, J.D. 1995, “Fatigue Fracture of Thin Plates Under Tensile and Transverse Shearing Stresses”, in W. Reuter, ed. Fracture Mechanics, 26th Volume, ASTM STP 1256, American Society for Testing and Materials, pp. 631–651.
67.
Parks
,
D.
,
1974
, “
A Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors
,”
Int. J. Fract.
10
, pp.
487
502
.
68.
Ansell, H. 1998, “Bulging of Cracked Pressurized Aircraft Structures,” Report No. LIU-TEK-LIC 1988:11, Ph.D. thesis, Linko¨ping University.
69.
Rybicki
,
E.
, and
Kanninen
,
M.
,
1977
, “
A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral
,”
Eng. Fract. Mech.
9
, pp.
931
938
.
70.
Viz, M.J., 1996, “Fatigue Fracture of 2024-t3 Aluminum Plates under Combined In-plane Symmetric and Out-of-plane Antisymmetric Mixed-Mode Deformations,” Ph.D. thesis, Cornell University.
71.
Frangi
,
A.
,
1997
, “
Regularized BE Formulations for the Analysis of Fracture in Thin Plates
,”
Int. J. Fract.
84
, pp.
351
366
.
72.
Frangi
,
A.
, and
Guiggiani
,
M.
,
1999
, “
Boundary Element Analysis of Kirchhoff Plates with Direct Evaluation of Hypersingular Integrals
,”
Int. J. Numer. Methods Eng.
46
, pp.
1845
1863
.
73.
Su
,
R.K.L.
, and
Sun
,
H.Y.
,
2002
, “
Numerical Solution of Cracked Thin Plates Subjected to Bending, Twisting and Shear Loads
,”
Int. J. Fract.
117
, pp.
323
335
.
74.
Wilson
,
W.K.
, and
Thompson
,
D.G.
,
1971
, “
On the Finite Element Method for Calculating Stress Intensity Factors for Cracked Plates in Bending
,”
Eng. Fract. Mech.
3
, pp.
97
102
.
75.
Chen
,
W.H.
and
Chen
,
P.Y.
,
1984
, “
A Hybrid-Displacement Finite Element Model for the Bending Analysis of Thin Cracked Plates
,”
Int. J. Fract.
24
, pp.
83
106
.
76.
Chen
,
W.H.
,
Yang
,
K.C.
, and
Chang
,
C.S.
,
1984
, “
A Finite Element Alternating Approach for the Bending Analysis of Thin Cracked Plates
,”
Int. J. Fract.
24
, pp.
83
106
.
77.
Ahmad
,
J.
, and
Loo
,
F.T.C.
,
1979
, “
Solution of Plate Bending Problems in Fracture Mechanics Using a Specialized Finite Element Technique
,”
Eng. Fract. Mech.
11
, pp.
661
673
.
78.
Chen
,
W.
and
Shen
,
C.
,
1993
, “
A Finite Element Alternating Approach to the Bending of Thin Plates Containing Mixed Mode Cracks
,”
Int. J. Solids Struct.
30
, pp.
2261
2276
.
79.
Dolbow
,
J.
,
Moes
,
N.
, and
Belytschko
,
T.
,
2000
, “
Modeling Fracture in Mindlin-Reissner Plates with the Extended Finite Element Method
,”
Int. J. Solids Struct.
37
, pp.
7161
7183
.
80.
Yau
,
J.
,
Wang
,
S.
, and
Corten
,
H.
,
1980
, “
A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity
,”
ASME J. Appl. Mech.
47
, pp.
335
341
.
81.
Dirgantara
,
T.
, and
Aliabadi
,
M.H.
,
2001
, “
Dual Boundary Element Formulation for Fracture Mechanics Analysis of Shear Deformable Shells
,”
Int. J. Solids Struct.
38
, pp.
7769
7800
.
82.
Dirgantara
,
T.
, and
Aliabadi
,
M.H.
,
2002
, “
Stress Intensity Factors for Cracks in Thin Plates
,”
Eng. Fract. Mech.
69
, pp.
1465
1486
.
83.
Dirgantara
,
T.
, and
Aliabadi
,
M.H.
,
2002
, “
Numerical Simulation of Fatigue Crack Growth in Pressurized Shells
,”
Int. J. Fatigue
24
, pp.
725
738
.
84.
Wen
,
P.H.
,
Aliabadi
,
M.H.
, and
Young
,
A.
,
2003
, “
Fracture Mechanics Analysis of Curved Stiffened Panels Using Bem
,”
Int. J. Solids Struct.
40
, pp.
219
236
.
85.
Riks, E, and den Reijer, P. 1987, “Finite Element Analysis of Cracks in a Thin Walled Cylinder under Internal Pressure,” Tech Report, National Aerospace Laboratory, Amsterdam, Netherlands, Report No. NLR-TR-87021-U, NTIS No PB88-241021.
86.
Riks, E., 1987, “Bulging Cracks in Pressurized Fuselages: A Numerical Study, Tech Report, National Aerospace Laboratory, Amsterdam, Netherlands, Report No NLR-MP-87058-U, NTIS No PB89-153340.
87.
Chen
,
D.
, and
Schijve
,
J.
,
1991
, “
Bulging of Fatigue Cracks in a Pressurized Aircraft Fuselage,” Aeronautical Fatigue: Key to Safety and Structural Integrity, A. Kobayashi, ed., Proc. 16th ICAF Symposium, Tokyo, May 22–24, International Committee on Aeronautical Fatigue, EMAS Publishing.
88.
Chen
,
C.S.
,
Wawrzynek
,
P.
, and
Ingraffea
,
A.R.
,
2002
, “
Prediction of Residual Strength and Curvilinear Crack Growth in Aircraft Fuselages,”
AIAA J.
40
, pp.
1644
1652
.
89.
Chen, C.S., Wawrzynek, P., and Ingraffea, A.R., 1999, “Residual Strength Prediction in KC-135 Fuselages and Curvilinear Crack Growth Analysis in Narrow Body Fuselages,” in Third Joint FAA-DoD-NASA Conference on Aging Aircraft.
90.
Huang
,
N.C.
,
Li
,
Y.C.
, and
Russell
,
S.G.
,
1997
, “
Fracture Mechanics of Plates and Shells Applied to Fail-safe Analysis of Fuselage Part II: Computational Results
,”
Theor. Appl. Fract. Mech.
27
, pp.
237
253
.
91.
Erdogan
,
F.
,
Tuncel
,
O.
, and
Paris
,
P.
,
1962
, “
An Experimental Investigation of the Crack Tip Stress Intensity Factors in Plates under Cylindrical Bending
,”
ASME J. Basic Eng.
84
, pp.
542
546
.
92.
Wynn
,
R.
and
Smith
,
C.
,
1969
, “
An Experimental Investigation of Fracture Criteria for Combined Extension and Bending
,”
ASME J. Basic Eng.
91
, pp.
841
849
.
93.
Saint-John
,
C.
, and
Street
,
K.
,
1974
, “
B-Al Composite Failure Under Combined Torsion and Tension Loading
,”
J. Compos. Mater.
8
, pp.
266
274
.
94.
Ewing
,
P.D.
and
Williams
,
J.G.
,
1974
, “
Fracture of Spherical-Shells under Pressure and Circular Tubes with Angled Cracks in Torsion
,”
Int. J. Fract.
10
, pp.
537
544
.
95.
Bastun
,
V.N.
,
1994
, “
Fracture of Thin-walled Bodies with Crack Under Biaxial Loading
,”
Eng. Fract. Mech.
48
, pp.
703
709
.
96.
Zehnder
,
A.T.
,
Viz.
M.J.
, and
Potdar
,
Y.K.
,
2000
, “
Fatigue Fracture in Plates Under Tension and Out-of-plane Shear
,”
Fatigue Fract. Eng. Mater. Struct.
23
, pp.
403
415
.
97.
Tschegg
,
E.
,
Ritchie
,
R.
, and
McClintock
,
F.
,
1983
, “
On the Influence of Rubbing Fracture Surfaces on Fatigue Crack Propagation in Mode III
,”
Int. J. Fatigue
5
, pp.
29
35
.
98.
Tschegg
,
E.
, and
Suresh
,
S.
,
1988
, “
Mode III Fracture of 4340 Steel: Effects of Tempering Temperature and Fracture Surface Interface
,”
Metall. Trans. A
19A
, pp.
3035
3044
.
99.
Gross
,
T.
,
1985
, “
Frictional Effects in Mode III Fatigue Crack Propagation
,”
Scripta Metall.
19
, pp.
1185
1188
.
100.
Narasimhan
,
R.
, and
Rosakis
,
A.J.
1988
, “
A Finite Element Analysis of Small-Scale Yielding Near a Stationary Crack Under Plane Stress
,”
J. Mech. Phys. Solids
36
, pp.
77
117
.
101.
Hudson, C., 1969, “Effect of Stress Ratio on Fatigue-Crack Growth in 7075-T6 and 2024-T3 Aluminum-Alloy Specimens, Tech Report, National Aeronautics and Space Administration,” NASA TN D-5390.
You do not currently have access to this content.