Hydraulic transients in closed conduits have been a subject of both theoretical study and intense practical interest for more than one hundred years. While straightforward in terms of the one-dimensional nature of pipe networks, the full description of transient fluid flows pose interesting problems in fluid dynamics. For example, the response of the turbulence structure and strength to transient waves in pipes and the loss of flow axisymmetry in pipes due to hydrodynamic instabilities are currently not understood. Yet, such understanding is important for modeling energy dissipation and water quality in transient pipe flows. This paper presents an overview of both historic developments and present day research and practice in the field of hydraulic transients. In particular, the paper discusses mass and momentum equations for one-dimensional Flows, wavespeed, numerical solutions for one-dimensional problems, wall shear stress models; two-dimensional mass and momentum equations, turbulence models, numerical solutions for two-dimensional problems, boundary conditions, transient analysis software, and future practical and research needs in water hammer. The presentation emphasizes the assumptions and restrictions involved in various governing equations so as to illuminate the range of applicability as well as the limitations of these equations. Understanding the limitations of current models is essential for (i) interpreting their results, (ii) judging the reliability of the data obtained from them, (iii) minimizing misuse of water-hammer models in both research and practice, and (iv) delineating the contribution of physical processes from the contribution of numerical artifacts to the results of waterhammer models. There are 134 refrences cited in this review article.

1.
Vanderburg
,
V. H.
,
1986
, “
Knowing Technology as if People Mattered
,”
Man-Env. Syst.
16
, pp.
69
75
.
2.
Kuhn, T., 1962, The Structure of Scientific Revolutions, University of Chicago Press, Chicago, IL.
3.
Menabrea
,
L. F.
,
1885
, “
Note sur les effects de choc de l’eau dans les conduites
,”
C. R. Hebd. Seances Acad. Sci.
47
, July–Dec., pp.
221
224
.
4.
Michaud
,
J.
,
1878
, “
Coups de be´lier dans les conduites. E´tude des moyens employe´s pour en atteneur les effects
,”
Bull. Soc. Vaudoise Ing. Arch.
4
(
3,4
), pp.
56
64
, 65–77.
5.
Weston
,
E. B.
,
1885
, “
Description of Some Experiments Made on the Providence, RI Water Works to Ascertain the Force of Water Ram in Pipes
,”
Trans. Am. Soc. Civ. Eng.
14
, p.
238
238
.
6.
Carpenter, R. C., 1893, “Experiments on Waterhammer,” Trans. ASME, 15.
7.
Frizell
,
J. P.
,
1898
, “
Pressures Resulting from Changes of Velocity of Water in Pipes
,”
Trans. Am. Soc. Civ. Eng.
39
, pp.
1
18
.
8.
Joukowski
,
N. E.
,
1898
, “
Memoirs of the Imperial Academy Society of St. Petersburg,” 9(5) (Russian translated by O Simin 1904
),
Proc. Amer. Water Works Assoc.
24
, pp.
341
424
.
9.
Allievi, L., 1903, “Teoria generale del moto perturbato dell’acqu ani tubi in pressione,” Ann. Soc. Ing. Arch. Ithaliana (French translation by Allievi (1904, Revue de me´canique).
10.
Allievi, L., 1913, “Teoria del colpo d’ariete,” Atti Collegio Ing. Arch. (English translation by Halmos EE 1929), “The Theory of Waterhammer,” Trans. ASME.
11.
Courant, R. and Friedrichs, K. O., 1976, Supersonic Flow and Shock Waves, Springer-Verlag, New York.
12.
Jaeger, C., 1933, Theorie Generale du Coup de Belier, Dunod, Paris.
13.
Jaeger, C., 1956, Engineering Fluid Mechanics translated from German by P.O. Wolf, Blackie, London.
14.
Wood
,
F. M.
,
1937
, “
The Application of Heavisides Operational Calculus to the Solution of Problems in Waterhammer
,”
Trans. ASME
59
, pp.
707
713
.
15.
Rich, G., 1944, “Waterhammer Analysis by the Laplace-Mellin Transformations,” Trans. ASME, pp. 1944–45.
16.
Rich, G., 1951, Hydraulic Transients, 1st Edition, McGraw-Hill, New York, 1951 (Dover Reprint).
17.
Parmakian, J., 1955, Water-Hammer Analysis. Prentice-Hall Englewood Cliffs, N.J., 1955 (Dover Reprint, 1963).
18.
Streeter
,
V. L.
, and
Lai
,
C.
,
1963
, “
Waterhammer Analysis Including Fluid Friction
,”
Trans. Am. Soc. Civ. Eng.
128
, pp.
1491
1524
.
19.
Streeter, V. L. and Wylie, E. B., 1967, Hydraulic Transients, McGraw-Hill, New York.
20.
Chaudhry, M. H., 1987, Applied Hydraulic Transients, Van Nostrand Reinhold, New York.
21.
Watters, G. Z., 1984, Analysis and Control of Unsteady Flow in Pipelines, Butterworth, Stoneham, Ma.
22.
Wylie, E. B. and Streeter, V. .L 1984, Fluid Transients, FEB Press, Ann Arbor.
23.
Wylie, E. B., Streeter, V. L., and Suo, Lisheng, 1993, Fluid Transient in Systems, Prentice-Hall, Englewood Cliffs,
24.
Mitra
,
A. K.
, and
Rouleau
W. T.
,
1985
, “
Radial and Axial Variations in Transient Pressure Waves Transmitted Through Liquid Transmission Lines
,”
ASME J. Fluids Eng.
107
, pp.
105
111
.
25.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
29
(
5
), pp.
669
685
.
26.
Ghidaoui, M. S. 2001, “Fundamental Theory of Waterhammer,” Special Issue of the Urban Water J. (Special Issue on Transients, Guest Editor: B. W. Karney), 1(2), pp. 71–83.
27.
Walker
,
J. S.
,
1975
, “
Perturbation Solutions for Steady One-Dimensional Waterhammer Waves
,”
ASME J. Fluids Eng.
6
, pp.
260
262
.
28.
Hinze, J. O., 1975, Turbulence, McGraw-Hill Classic Textbook Reissue Series, New York.
29.
Bergant, A. and Simpson, A. R., 1994, “Estimating Unsteady Friction in Transient Cavitating Pipe Flow,” Proc. 2nd Int. Conf. on Water Pipeline Systems, Edinburgh, UK, May 24–26, BHRA Group Conf. Series Publ. No. 110, pp. 3–15.
30.
Axworthy
,
D. H.
,
Ghidaoui
,
M. S.
, and
McInnis
,
D. A.
,
2000
, “
Extended Thermodynamics Derivation of Energy Dissipation in Unsteady Pipe Flow
,”
J. Hydraul. Eng.
126
(
4
), pp.
276
287
.
31.
Brunone
,
B.
,
Karney
,
B. W.
,
Mecarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
J. Water Resour. Plan. Manage.
126
(
4
), pp.
236
244
.
32.
Ghidaoui
,
M. S.
, and
Mansour
,
S.
,
2002
, “
Efficient Treatment of the Vardy-Brown Unsteady Shear in Pipe Transients
,”
J. Hydraul. Eng.
128
(
1
), pp.
102
112
.
33.
Korteweg
,
D. J.
,
1878
, “
U¨ber die fortpflanzungsgeschwindigkeit des schalles in elastischen rohren
,”
Ann. Phys. Chemie
5
(
12
), pp.
525
542
.
34.
Lighthill, J., 1996, Waves in Fluids, Cambridge University Press, UK.
35.
Tijsseling
,
A. S.
,
1995
, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluids Struct.
10
, pp.
109
146
.
36.
Streeter, V. L. and Wylie, E. B., 1985, Fluid Mechanics (8th Edition), McGraw Hill New York.
37.
Silva-Araya
,
W. F.
, and
Chaudhry
,
M. H.
,
1997
, “
Computation of Energy Dissipation in Transient Flow
,”
J. Hydraul. Eng.
123
(
2
), pp.
108
115
.
38.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
125
(
7
), pp.
676
685
.
39.
Daily
,
J. W.
,
Hankey
,
W. L.
,
Olive
,
R. W.
, and
Jordaan
,
J. M.
,
1956
, “
Resistance Coefficients for Accelerated and Decelerated Flows Through Smooth Tubes and Orifices
,”
Trans. ASME
78
(
July
), pp.
1071
1077
.
40.
Shuy
,
E. B.
,
1996
, “
Wall Shear Stress in Accelerating and Decelerating Turbulent Pipe Flows
,”
J. Hydraul. Res.
34
(
2
), pp.
173
183
.
41.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
1997
, “
Discussion on Wall Shear Stress in Accelerating and Decelerating Pipe Flow
,”
J. Hydraul. Res.
35
(
1
), pp.
137
139
.
42.
Ghidaoui
,
M. S.
, and
Kolyshkin
,
A. A.
,
2001
, “
Stability Analysis of Velocity Profiles in Water-Hammer Flows
,”
J. Hydraul. Eng.
127
(
6
), pp.
499
512
.
43.
Carstens
,
M. R.
, and
Roller
,
J. E.
,
1959
, “
Boundary-Shear Stress in Unsteady Turbulent Pipe Flow
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
85
(
HY2
), pp.
67
81
.
44.
Pezzinga
,
G.
,
2000
, “
Evaluation of Unsteady Flow Resistances by Quasi-2d or 1d Models
,”
J. Hydraul. Eng.
126
(
10
), pp.
778
785
.
45.
Eichinger, P. and Lein, G., 1992, The Influence of Friction on Unsteady Pipe Flow, Unsteady Flow and Fluid Transients, Bettess and Watts (eds), Balkema, Rotterdam, The Netherlands, 41–50.
46.
Ghidaoui
,
M. S.
,
Mansour
,
S. G. S.
, and
Zhao
,
M.
,
2002
, “
Applicability of Quasi Steady and Axisymmetric Turbulence Models in Water Hammer
,”
J. Hydraul. Eng.
128
(
10
), pp.
917
924
.
47.
Vardy, A. E. and Brown, J, M., 1996, “On Turbulent, Unsteady, Smooth-Pipe Friction, Pressure Surges and Fluid Transient,” BHR Group, London, pp. 289–311.
48.
Brunone, B. and Golia, U. M., 1991, “Some Considerations on Velocity Profiles in Unsteady Pipe Flows,” Proc. Int. Conf. on Enthropy and Energy Dissipation in Water Resources, Maratea, Italy, pp. 481–487.
49.
Greco, M., 1990, “Some Recent Findings On Column Separation During Water Hammer,” Excerpta, G.N.I., Padua, Italy, Libreria Progetto, ed., 5, 261–272.
50.
Brunone, B., Golia, U. M., and Greco, M., 1991, “Some Remarks on the Momentum Equation for Fast Transients,” Proc. Int. Conf. on Hydr. Transients With Water Column Separation, IAHR, Valencia, Spain, 201–209.
51.
Brunone, B., Golia, U. M., and Greco, M., 1991, “Modelling of Fast Transients by Numerical Methods,” Proc. Int. Conf. on Hydr. Transients With Water Column Separation, IAHR, Valencia, Spain, 273–280.
52.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Vitkovsky
,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
39
(
3
), pp.
249
257
.
53.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1995
, “
Effects of Two-Dimensionality on Pipe Transients Modeling
,”
J. Hydraul. Eng.
121
(
12
), pp.
906
912
.
54.
Wylie
,
E. B.
,
1997
, “
Frictional Effects in Unsteady Turbulent Pipe Flows
,”
Appl. Mech. Rev.
50
(
11
), Part 2, pp.
S241–S244
S241–S244
.
55.
Vitkovsky, J. P., Lambert, M. F., Simpson, A. R., and Bergant, A., 2000, “Advances in Unsteady Friction Modelling in Transient Pipe Flow,” 8th Int. Conf. on Pressure Surges, The Hague, The Netherlands.
56.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
90
(
1
), pp.
109
115
.
57.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
97
(
1
), pp.
97
105
.
58.
Suzuki
,
K.
,
Taketomi
,
T.
, and
Sato
,
S.
,
1991
, “
Improving Zielke’s Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow
,”
ASME J. Fluids Eng.
113
(
4
), pp.
569
573
.
59.
Vardy
,
A. E.
,
Hwang
,
K. L.
, and
Brown
,
J. M. B.
,
1993
, “
A Weighting Model of Transient Turbulent Pipe Friction
,”
J. Hydraul. Res.
31
, pp.
533
548
.
60.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
1995
, “
Transient, Turbulent, Smooth Pipe Friction
,”
J. Hydraul. Res.
33
, pp.
435
456
.
61.
Almeida, A. B. and Koelle, E., 1992, Fluid Transients in Pipe Networks, Computational Mechanics Publications, Elsevier, New York.
62.
Lister, M., 1960, The Numerical Solution of Hyperbolic Partial Differential Equations by the Method of Characteristics, A Ralston and HS Wilf (eds), Numerical Methods for Digital Computers, Wiley New York, 165–179.
63.
Wiggert
,
D. C.
, and
Sundquist
,
M. J.
,
1977
, “
Fixed-Grid Characteristics for Pipeline Transients
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
103
(
HY12
), pp.
1403
1415
.
64.
Goldberg
,
D. E.
, and
Wylie
,
E. B.
,
1983
, “
Characteristics Method Using Time-Line Interpolations
,”
J. Hydraul. Eng.
109
(
5
), pp.
670
683
.
65.
Lai
,
C.
,
1989
, “
Comprehensive Method of Characteristics Models for Flow Simulation
,”
J. Hydraul. Eng.
114
(
9
), pp.
1074
1095
.
66.
Yang
,
J. C.
, and
Hsu
,
E. L.
,
1990
, “
Time-Line Interpolation for Solution of the Dispersion Equation
,”
J. Hydraul. Res.
28
(
4
), pp.
503
523
.
67.
Yang
,
J. C.
, and
Hsu
,
E. L.
,
1991
, “
On the Use of the Reach-Back Characteristics Method of Calculation of Dispersion
,”
Int. J. Numer. Methods Fluids
12
, pp.
225
235
.
68.
Bentley
,
L. R.
,
1991
, Discussion of “
On the Use of the Reach-Back Characteristics Method for Calculation of Dispersion,” by J. C. Yang, and EL Hsu
,
Int. J. Numer. Methods Fluids
13
(
5
), pp.
1205
1206
.
69.
Sibertheros
,
I. A.
,
Holley
,
E. R.
, and
Branski
,
J. M.
,
1991
, “
Spline Interpolations for Water Hammer Analysis
,”
J. Hydraul. Eng.
117
(
10
), pp.
1332
1349
.
70.
Karney
,
B. W.
, and
Ghidaoui
,
M. S.
,
1997
, “
Flexible Discretization Algorithm for Fixed Grid MOC in Pipeline Systems
,”
J. Hydraul. Eng.
123
(
11
), pp.
1004
1011
.
71.
Wood
,
D. J.
,
Dorsch
,
R. G.
, and
Lightnor
,
C.
,
1966
, “
Wave-Plan Analysis of Unsteady Flow in Closed Conduits
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
92
(
HY12
), pp.
83
110
.
72.
Wylie, E. B. and Streeter, V. L., 1970, “Network System Transient Calculations by Implicit Method,” 45th Annual Meeting of the Society of Petroleum Engineers of AIME, Houston, Texas October 4–7, paper No. 2963.
73.
Holly
,
F. M.
, and
Preissmann
,
A.
,
1977
, “
Accurate Calculation of Transport in Two Dimensions
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
103
(
HY11
), pp.
1259
1277
.
74.
Chaudhry
,
M. H.
, and
Hussaini
,
M. Y.
,
1985
, “
Second-Order Accurate Explicitly Finite-Difference Schemes for Water Hammer Analysis
,”
ASME J. Fluids Eng.
107
, pp.
523
529
.
75.
Toro, E. F., 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin.
76.
Toro, E. F., 2001, Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley Ltd, Chichester, England.
77.
Guinot
,
V.
,
2002
, “
Riemann Solvers for Water Hammer Simulations by Godunov Method
,”
Int. J. Numer. Methods Eng.
49
, pp.
851
870
.
78.
Hwang
,
Y. H.
, and
Chung
,
N. M.
,
2002
, “
A Fast Godunov Method for the Water-Hammer Problem
,”
Int. J. Numer. Methods Fluids
40
, pp.
799
819
.
79.
O’Brian
,
G. G.
,
Hyman
,
M. A.
, and
Kaplan
,
S.
,
1951
, “
A Study of the Numerical Solution of Partial Differential Equations
,”
J. Math. Phys.
29
(
4
), pp.
223
251
.
80.
Damuller
,
D. C.
,
Bhallamudi
,
S. M.
, and
Chaudhry
,
M. H.
,
1989
, “
Modelling Unsteady Flow in Curved Channel
,”
J. Hydraul. Eng.
115
(
11
), pp.
1471
1495
.
81.
Samuels
,
G. P.
, and
Skeel
,
P. C.
,
1990
, “
Stability Limits for Preissmann’s Scheme
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
116
(
HY8
), pp.
997
1011
.
82.
Karney
,
B. W.
, and
Ghidaoui
,
M. S.
,
1992
, “
Discussion on Spline Interpolations for Water Hammer Analysis
,”
J. Hydraul. Eng.
118
(
11
), pp.
1597
1600
.
83.
Sivaloganathan
,
K.
,
1978
, “
Flood Routing by Characteristic Methods
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
107
(
HY7
), pp.
1075
1091
.
84.
Wylie, E. B., 1980, “Inaccuracies in the Characteristics Method,” Proc. Spec. Conf. on Comp. and Physical Modelling in Hydr. Eng. ASCE, Chicago, 165–176.
85.
Ghidaoui
,
M. S.
, and
Karney
,
B. W.
,
1994
, “
Equivalent Differential Equations in Fixed-Grid Characteristics Method
,”
J. Hydraul. Eng.
120
(
10
), pp.
1159
1176
.
86.
Ghidaoui
,
M. S.
,
Karney
,
B. W.
, and
McInnis
,
D. A.
,
1998
, “
Energy Estimates for Discretization Errors in Waterhammer Problems
,”
J. Hydraul. Eng.
123
(
11
), pp.
384
393
.
87.
Das
,
D.
, and
Arakeri
,
J. H.
,
1998
, “
Transition of Unsteady Velocity Profiles with Reverse Flow
,”
J. Fluid Mech.
374
, pp.
251
283
.
88.
Brunone, B., Karney, B. W., and Ferrante, M., 1999, “Velocity Profiles Unsteady Friction Losses and Transient Modelling,” Proc. 26th Annu. Water Resour. Plng. and Mgmt. Conf. ASCE, Reston, VA (on CD-ROM).
89.
Lodahl
,
C. R.
,
Sumer
,
B. M.
, and
Fredsoe
,
J.
,
1998
, “
Turbulent Combined Oscillatory Flow and Current in Pipe
,”
J. Fluid Mech.
373
, pp.
313
348
.
90.
Ghidaoui
,
M. S.
, and
Kolyshkin
,
A. A.
,
2002
, “
A Quasi-Steady Approach to the Instability of Time-Dependent Flows in Pipes
,”
J. Fluid Mech.
465
, pp.
301
330
.
91.
Pezzinga
,
G.
, and
Scandura
,
P.
,
1995
, “
Unsteady Flow in Installations with Polymeric Additional Pipe
,”
J. Hydraul. Eng.
121
(
11
), pp.
802
811
.
92.
Greenblatt
,
D.
, and
Moss
,
E. A.
,
1999
, “
Pipe-Flow Relaminarization by Temporal Acceleration
,”
Phys. Fluids
11
(
11
), pp.
3478
3481
.
93.
He
,
S.
, and
Jackson
,
J. D
,
2000
, “
A Study of Turbulence Under Conditions of Transient Flow in a Pipe
,”
J. Fluid Mech.
408
, pp.
1
38
.
94.
Tu
,
S. W.
, and
Ramaprian
,
B. R.
,
1983
, “
Fully Developed Periodic Turbulent Pipe Flow–Part 1: Main Experimental Results and Comparison with Predictions
,”
J. Fluid Mech.
137
, pp.
31
58
.
95.
Brereton
,
G. L.
,
Reynolds
,
W. C.
, and
Jayaraman
,
R.
,
1990
, “
Response of a Turbulent Boundary Layer to Sinusoidal Free-Stream Unsteadiness
,”
J. Fluid Mech.
221
, pp.
131
159
.
96.
Akhavan
,
R.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
,
1991
, “
Investigation of Transition to Turbulence in Bounded Oscillatory Stokes Flows–Part 1: Experiments
,”
J. Fluid Mech.
225
, pp.
395
422
.
97.
Akhavan
,
R.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
,
1991
, “
Investigation of Transition to Turbulence in Bounded Oscillatory Stokes Flows–Part 2: Numerical Simulations
,”
J. Fluid Mech.
225
, pp.
423
444
.
98.
Silva-Araya
,
W. F.
, and
Chaudhry
,
M. H.
,
2001
, “
Unsteady Friction in Rough Pipes
,”
J. Hydraul. Eng.
127
(
7
), pp.
607
618
.
99.
Ohmi
,
M.
,
Kyomen
,
S.
, and
Usui
,
T.
,
1985
, “
Numerical Analysis of Transient Turbulent Flow in a Liquid Line
,”
Bull. JSME
28
(
239
), pp.
799
806
.
100.
Wood
,
D. J.
, and
Funk
,
J. E.
,
1970
, “
A Boundary-Layer Theory for Transient Viscous Losses in Turbulent Flow
,”
ASME J. Basic Eng.
102
, pp.
865
873
.
101.
Bratland, O., 1986, “Frequency-Dependent Friction and Radial Kinetic Energy Variation in Transient Pipe Flow,” Proc. 5th Int. Conf. on Pressure Surges, BHRA, Hannover, Germany, 95–101.
102.
Rodi, W., 1993, Turbulence Models and Their Application in Hydraulics: A State-of-the-Art Review, 3rd Edition, Int. Association for Hydraulic Research, Delft, Balkema.
103.
Kita
,
Y.
,
Adachi
,
Y.
, and
Hirose
,
K.
,
1980
, “
Periodically Oscillating Turbulent Flow in a Pipe
,”
Bull. JSME
23
(
179
), pp.
654
664
.
104.
Eggels, J. G. M., 1994, “Direct and Large Eddy Simulation of Turbulent Flow in a Cylindrical Pipe Geometry,” PhD Dissertation, Delft University of Technology.
105.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2003
, “
An Efficient Solution for Quasi-Two-Dimensional Water Hammer Problems
,”
J. Hydraul. Eng.
,
129
(
12
), pp.
1007
1013
.
106.
Karney
,
B. W.
, and
McInnis
,
D.
,
1990
, “
Transient Analysis of Water Distribution Systems
,”
J. AWWA
82
(
7
), pp.
62
70
.
107.
Wylie
,
E. B.
,
1983
, “
The Microcomputer and Pipeline Transients
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
109
(
HY12
), pp.
539
42
.
108.
Karney, B. W., 1984, “Analysis of Fluid Transients in Large Distribution Networks,” Ph.D. thesis, University of British Columbia, Vancouver, Canada.
109.
Fox, J. A., 1977, Hydraulic Analysis and Unsteady Flow in Pipe Networks, MacMillan Press, London.
110.
Koelle, E., 1982, “Transient Analysis of Pressure Conduit Hydraulic Systems,” Proc the Int. Institute on Hydraulic Transients and Cavitation, Sao Paulo, Brazil, B1.1–B1.38.
111.
McInnis, D. A., 1992, “Comprehensive Hydraulic Analysis of Complex Pipe Systems,” Ph.D. thesis, University of Toronto, Toronto, Canada.
112.
McInnis
,
D. A.
,
Karney
,
B. W.
, and
Axworthy
,
D. H.
,
1997
, “
Efficient Valve Representation in Fixed-Grid Characteristics Method
,”
J. Hydraul. Eng.
123
(
8
), pp.
709
718
.
113.
Beck, J. L. and Katafygiotis, L. S., 1992, “Updating Dynamic Models and Their Associated Uncertainties for Structural Systems,” Pro. the 9th Engineering Mechanics Conference, L. D. Lutes and J. M. Niedzwecki, eds., ASCE, Reston, VA, pp. 681–684.
114.
Sykes
,
J. F.
,
1985
, “
Sensitivity Analysis for Steady State Ground Water Flow Using Adjoint Operators
,”
Water Resour. Res.
21
(
3
), pp.
359
371
.
115.
Sun
,
N. Z.
, and
Yeh
,
W. G.
,
1990
, “
Coupled Inverse Problems in Groundwater Modeling–2: Identifiability and Experimental Design
,”
Water Resour. Res.
26
(
10
), pp.
2527
2540
.
116.
Sun, N. Z., 1994, Inverse Problems in Groundwater Modeling, Kluwer Academic Publishers.
117.
Jarny
,
Y.
,
Ozisik
,
M. N.
, and
Bardon
,
J. P.
,
1991
, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
34
(
11
), pp.
2911
2919
.
118.
Cacuci
,
D. G.
, and
Hall
,
M. C. G.
,
1984
, “
Efficient Estimation of Feedback Effects with Application to Climate Models
,”
J. Atmos. Sci.
13
(
2
), pp.
2063
2068
.
119.
Hall
,
M. C. G.
,
1986
, “
Application of Adjoint Sensitivity Theory to an Atmospheric General Circulation Model
,”
J. Atmos. Sci.
43
(
22
), pp.
2644
2651
.
120.
Marchuk, G. I., 1995, Adjoint Equations and Analysis of Complex Systems, Kluwer, London.
121.
Liggett
,
J. A.
, and
Chen
,
L. C.
,
1994
, “
Inverse Transient Analysis in Pipe Networks
,”
J. Hydraul. Eng.
120
(
8
), pp.
934
995
.
122.
Karney, B. W. and Tang, K., 2003, personal communication.
123.
Brunone
,
B.
,
1999
, “
Transient Test-Based Technique for Leak Detection in Outfall Pipes
,”
J. Water Resour. Plan. Manage.
125
(
5
), pp.
302
306
.
124.
Brunone
,
B.
, and
Ferrante
,
M.
,
2001
, “
Detecting Leaks in Pressurised Pipes by Means of Transient
,”
J. Hydraul. Res.
39
(
5
), pp.
539
547
.
125.
Mpesha
,
W.
,
Gassman
,
S. L.
, and
Chaudhry
,
M. H.
,
2001
, “
Leak Detection in Pipes by Frequency Response Method
,”
J. Hydraul. Eng.
127
(
2
), pp.
137
147
.
126.
Mpesha
,
W.
,
Chaudhry
,
M. H.
, and
Gassman
SL
2002
, “
Leak Detection in Pipes by Frequency Response Method Using a Step Excitation
,”
J. Hydraul. Res.
40
(
1
), pp.
55
62
.
127.
Ferrante
,
M.
, and
Brunone
,
B.
,
2002
, “
Pipe System Diagnosis and Leak Detection by Unsteady-State Tests–1: Harmonic Analysis
,”
Adv. Water Resour.
26
, pp.
95
105
.
128.
Wang
,
Xiao-Jian
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Liggett
,
J. A.
,
2002
, “
Leak Detection in Pipelines Using the Damping of Fluid Transients
,”
J. Hydraul. Eng.
128
(
7
), pp.
697
711
.
129.
Ferrante
,
M.
, and
Brunone
,
B.
,
2002
, “
Pipe System Diagnosis and Leak Detection by Unsteady-State Tests–2: Wavelent Analysis
,”
Adv. Water Resour.
26
, pp.
107
116
.
130.
Payment
,
P.
,
1999
, “
Poor Efficacy of Residual Chlorine Disinfectant in Drinking Water to Inactivate Waterborne Pathogens in Distribution system
,”
Can. J. Microbiol.
45
(
8
), pp.
709
715
.
131.
Funk, J. E., van Vuuren, S. J., Wood, D. J., and LeChevallier, M., 1999, “Pathogen Intrusion into Water Distribution Systems Due to Transients,” Proc. 3rd ASME/JSME Joint Fluids Engineering Conf., July 18–23, San Francisco, California.
132.
Germanopoulos, G. and Jowitt, P. W., 1989, “Leakge Reduction by Excessive Pressure Minimization in a Water Supply Network,” Proc. Inst. of Civ. Eng. (UK), 195–214.
133.
McInnis, D. A., 2003, “A Relative-Risk Assessment Framework for Evaluating Pathogen Intrusion During Transient Events in Water Pipelines,” Urban Water J. (Special Issue on Transients, Guest Editor: B. W. Karney), 1(2), pp. 113–127.
You do not currently have access to this content.