The purpose of this part of the paper is to provide a review of recent results (1991–2003) in the applications of statistical and equivalent linearization in the analysis of structure and mechanical nonlinear stochastic dynamic systems. Both the applications in “traditional fields” of engineering and a few examples from new fields are reported. Traditional fields include vibration of construction elements, such as beams, frames, shells, and plates, and also vibration of complex structures under earthquake or wind or wave stochastic excitations, or a combination of earthquake and wind or wind and wave excitations. Typical constructions are multistory structures, offshore platforms, and vehicle models. In the paper several examples from new fields, such as vibration of wood structures, block rocking, rainfall-runoff modeling, a squeeze film model, and an astronomy model are reviewed. A discussion of typical advantages and faults of linearization techniques and some general conclusions close the paper. There are 121 references cited in this review article.

1.
Elishakoff
,
I.
, 1995, “
Random Vibration of Structures: A Personal Perspective
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
809
825
.
2.
Elishakoff
,
I.
, 2000, “
Stochastic Linearization Technique: A New Interpretation and a Selective Review
,”
Shock Vib. Dig.
0583-1024,
32
, pp.
179
188
.
3.
Proppe
,
C.
,
Pradlwarter
,
H. J.
, and
Schuëller
,
G. I.
, 2003, “
Equivalent Linearization and Monte Carlo Simulation in Stochastic Dynamics
,”
Probab. Eng. Mech.
0266-8920,
18
, pp.
1
15
.
4.
Soong
,
T. T.
, and
Grigoriu
,
M.
, 1993,
Random Vibration of Mechanical and Structural Systems
,
Prentice Hall
, Englewood Cliffs, NJ.
5.
Newland
,
D. E.
, 1993,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
, 3rd Edition, Longmans, Green, NY.
6.
Lin
,
Y. K.
, and
Cai
,
G. Q.
, 1995,
Probabilistic Structural Dynamics Advances Theory and Applications
,
McGraw-Hill
, New York.
7.
Solnes
,
J.
, 1997,
Stochastic Processes and Random Vibrations Theory and Practice
,
Wiley
, New York.
8.
Lutes
,
L. D.
, and
Sarkani
,
S.
, 1997,
Stochastic Analysis of Structural and Mechanical Vibrations
,
Prentice Hall
, Englewood Cliffs, NJ.
9.
Socha
,
L.
, 2005, “
Linearization in Analysis of Nonlinear Stochastic Systems, Recent Results. Part I. Theory
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
178
205
.
10.
Roberts
,
J. B.
, and
Spanos
,
P. D. T.
, 1990,
Random Vibration and Statistical Linearization
,
Wiley
, Chichester.
11.
Socha
,
L.
, and
Soong
,
T. T.
, 1991, “
Linearization in Analysis of Nonlinear Stochastic Systems
,”
Appl. Mech. Rev.
0003-6900,
44
, pp.
399
422
.
12.
Pradlwarter
,
H. J.
, and
Li
,
W.
, 1991, “
On the Computations of the Stochastic Response of Highly Nonlinear Large MDOF-Systems Modeled by Finite Elements
,”
Probab. Eng. Mech.
0266-8920,
6
, pp.
109
116
.
13.
Locke
,
J. E.
, 1994, “
Finite-Element Nonlinear Random Response of Beams
,”
J. Sound Vib.
0022-460X,
178
, pp.
201
210
.
14.
Chen
,
R. P.
,
Mei
,
C.
, and
Wolfe
,
H. F.
, 1996, “
Comparison of Finite Element Non-Linear Beam Random Response With Experimental Results
,”
J. Sound Vib.
0022-460X,
195
, pp.
719
737
.
15.
Schuëller
,
G. I.
, and
Pradlwarter
,
H. J.
, 1999, “
On the Stochastic Response of Nonlinear FE Models
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
765
784
.
16.
Cheng
,
G. F.
,
Lee
,
Y. Y.
, and
Mei
,
C.
, 2003, “
Nonlinear Random Response of Internally Hinged Beams
,”
Finite Elem. Anal. Design
0168-874X,
39
, pp.
487
504
.
17.
Bouc
,
R.
, and
Defilippi
,
M.
, 1997, “
Multimodal Nonlinear Spectral Response of a Beam With Impact Under Random Input
,”
Probab. Eng. Mech.
0266-8920,
12
, pp.
163
170
.
18.
Bellizzi
,
S.
, and
Bouc
,
R.
, 1999, “
Analysis of Multi-Degree-of-Freedom Strongly Non-Linear Mechanical Systems With Random Input. Part II: Equivalent Linear System With Random Matrices and Spectral Density Matrix
,”
Probab. Eng. Mech.
0266-8920,
14
, pp.
245
256
.
19.
Elishakoff
,
I.
,
Fang
,
J.
, and
Caimi
,
R.
, 1995, “
Random Vibration of a Nonlinearly Deformed Beam by a New Stochastic Linearization Technique
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
1571
1584
.
20.
Fang
,
J.
,
Elishakoff
,
I.
, and
Caimi
,
R.
, 1995, “
Nonlinear Response of a Beam Under Stationary Random Excitation by Improved Stochastic Linearization Method
,”
Appl. Math. Model.
0307-904X,
19
, pp.
106
111
.
21.
Casciati
,
F.
,
Faravelli
,
L.
, and
Venini
,
P.
, 1994, “
Frequency-Analysis in Stochastic Linearization
,”
J. Eng. Mech.
0733-9399,
120
, pp.
2498
2518
.
22.
Köylüoğlu
,
H. U.
,
Nielsen
,
S. R. K.
, and
Cakmak
,
A. S.
, 1996, “
Stochastic Dynamics of Geometrically Non-Linear Structures With Random Properties Subject to Stationary Random Excitation
,”
J. Sound Vib.
0022-460X,
190
, pp.
821
841
.
23.
Iwan
,
W. D.
, and
Whirley
,
R. G.
, 1993, “
Nonstationary Equivalent Linearization of Nonlinear Continuous Systems
,”
Probab. Eng. Mech.
0266-8920,
8
, pp.
273
280
.
24.
Grigoriu
,
M.
, 1991, “
Statistically Equivalent Solutions of Stochastic Mechanics Problems
,”
J. Eng. Mech.
0733-9399,
117
, pp.
1906
1918
.
25.
Chen
,
C. C. T.
, and
Yang
,
H. T. Y.
, 1993, “
Flexible Thin Shell Elements Under Nonwhite and Nonzero Mean Loads
,”
J. Eng. Mech.
0733-9399,
119
, pp.
1680
1697
.
26.
Dogan
,
V.
, and
Vaicaitis
,
R.
, 1999, “
Nonlinear Response of Cylindrical Shells to Random Excitation
,”
Nonlinear Dyn.
0924-090X,
20
, pp.
33
53
.
27.
Sun
,
J. Q.
,
Bao
,
W.
, and
Miles
,
R. N.
, 1998, “
Fatique Life Prediction of Nonlinear Plates Under Random Excitations
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
353
360
.
28.
Chang
,
T. P.
, and
Ke
,
J. L.
, 1996, “
Nonlinear Dynamic Response of a Nonuniform Orthotropic Circular Plate Under Random Excitation
,”
Comput. Struct.
0045-7949,
60
, pp.
113
123
.
29.
Ghazarian
,
N.
, and
Locke
,
J.
, 1995, “
Nonlinear Random Response of Antisymmetric Angle-Ply Laminates Under Thermal-Acoustic Loading
,”
J. Sound Vib.
0022-460X,
186
, pp.
291
309
.
30.
Ng
,
C. F.
, 2000, “
The Nonlinear Acoustic Response of Thermally Buckled Plates
,”
Appl. Acoust.
0003-682X,
59
, pp.
237
251
.
31.
Harichandran
,
R. S.
, and
Naja
,
M. K.
, 1997, “
Random Vibration of Laminated Composite Plates With Material Non-Linearity
,”
Int. J. Non-Linear Mech.
0020-7462,
32
, pp.
707
720
.
32.
Kang
,
J. W.
, and
Harichandran
,
R. S.
, 1999, “
Random Vibration of Laminated FRP Plates With Material Nonlinearity Using High-Order Shear Theory
,”
J. Eng. Mech.
0733-9399,
125
, pp.
1081
1088
.
33.
Schuëller
,
G. I.
,
Pandey
,
M.
, and
Pradlwarter
,
H. J.
, 1994, “
Equivalent Linearization (EQL) in Engineering Practice for Aseismic Design
,”
Probab. Eng. Mech.
0266-8920,
9
, pp.
95
102
.
34.
Emam
,
H. H.
,
Pradlwarter
,
H. J.
, and
Schuëller
,
G. I.
, 1999, “
On the Computational Implementation of EQL in FE-Analysis
,”
Stochastic Structural Dynamics
,
B. F.
Spencer
and
E. A.
Johnson
, eds.,
Balkema
, Rotterdam, pp.
85
91
.
35.
Emam
,
H. H.
,
Pradlwarter
,
H. J.
, and
Schuëller
,
G. I.
, 2000, “
A Computational Procedure for Implementation of Equivalent Linearization in Finite Element Analysis
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
29
, pp.
1
17
.
36.
Cherng
,
R. H.
, and
Wen
,
Y. K.
, 1994, “
Reliability of Uncertain Nonlinear Trusses Under Random-Excitation, 1
,”
J. Eng. Mech.
0733-9399,
120
, pp.
733
747
.
37.
Yalla
,
S. K.
, and
Kareem
,
A.
, 2000, “
Optimum Absorber Parameters for Tuned Liquid Column Dampers
,”
J. Struct. Eng.
0733-9445,
126
, pp.
906
915
.
38.
Won
,
A. Y. J.
,
Pires
,
J. A.
, and
Haroun
,
M. A.
, 1996, “
Stochastic Seismic Performance Evaluation of Tuned Liquid Column Dampers
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
25
, pp.
1259
1274
.
39.
Won
,
A. Y. J.
,
Pires
,
J. A.
, and
Haroun
,
M. A.
, 1997, “
Performance Assessment of Tuned Liquid Column Dampers Under Random Seismic Loading
,”
Int. J. Non-Linear Mech.
0020-7462,
32
, pp.
745
758
.
40.
Er
,
G. K.
, and
Iu
,
V. P.
, 2000, “
Stochastic Response of Base-Excited Coulomb Oscillator
,”
J. Sound Vib.
0022-460X,
233
, pp.
81
92
.
41.
Cunha
,
A.
, 1994, “
The Role of the Stochastic Equivalent Linearization Method in the Analysis of the Nonlinear Seismic Response of Building Structures
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
23
, pp.
837
857
.
42.
Wang
,
J.
, and
Lin
,
J. H.
, 2000, “
Seismic Random Response Analysis of Hysteretic Systems With Pseudo Excitation Method
,”
Acta Mech. Sin.
0459-1879,
13
, pp.
246
253
.
43.
Guo
,
A. X.
,
Xu
,
Y. L.
, and
Wu
,
B.
, 2002, “
Seismic Reliability Analysis of Hysteretic Structure With Viscoelastic Dampers
,”
Eng. Struct.
0141-0296,
24
, pp.
373
383
.
44.
Ni
,
Y. Q.
,
Ko
,
J. M.
, and
Ying
,
Z. G.
, 2001, “
Random Seismic Response Analysis of Adjacent Buildings Coupled With Non-Linear Hysteretic Dampers
,”
J. Sound Vib.
0022-460X,
246
, pp.
403
417
.
45.
Su
,
L.
, and
Ahmadi
,
G.
, 1992, “
Probabilistic Responses of Base-Isolated Structures to El-Centro 1940 and Mexico-City 1958 Earthquakes
,”
Eng. Struct.
0141-0296,
14
, pp.
217
230
.
46.
Chen
,
Y.
, and
Ahmadi
,
G.
, 1992, “
Stochastic Earthquake Response of Secondary Systems in Base-Isolated Structures
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
21
, pp.
1039
1057
.
47.
Chen
,
Y.
, and
Ahmadi
,
G.
, 1994, “
Performance of a High Damping Rubber Bearing Base-Isolation System for a Shear Beam Structure
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
23
, pp.
729
744
.
48.
Jangid
,
R. S.
, and
Datta
,
T. K.
, 1995, “
Performance of Base-Isolation Systems for Asymmetric Building Subject to Random-Excitation
,”
Eng. Struct.
0141-0296,
17
, pp.
443
454
.
49.
Park
,
Y. J.
,
Wen
,
Y. K.
, and
Ang
,
A. H. S.
, 1986, “
Random Vibration of Hysteretic Systems Under Bi-Directional Ground Motion, Earthquake Engng
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
14
, pp.
543
557
.
50.
Fan
,
F.
,
Ahmadi
,
G.
,
Mostaghel
,
N.
, and
Tadjbakhsh
,
I. G.
, 1991, “
Performance Analysis of Aseismic Base Isolation Systems for Multi-Storey Building
,”
Soil Dyn. Earthquake Eng.
0267-7261,
10
, pp.
152
171
.
51.
Jangid
,
R. S.
, 1996, “
Optimum Damping In a Non-Linear Base Isolation System
,”
J. Sound Vib.
0022-460X,
189
, pp.
477
487
.
52.
Jangid
,
R. S.
, 2000, “
Stochastic Seismic Response of Structures Isolated by Rolling Rods
,”
Eng. Struct.
0141-0296,
22
, pp.
937
946
.
53.
Marano
,
G. C.
, and
Greco
,
R.
, 2003, “
Efficiency of Base Isolation Systems in Structural Seismic Protection and Energetic Assessment
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
32
, pp.
1505
1531
.
54.
Kulkarni
,
J. A.
, and
Jangid
,
R. S.
, 2003, “
Effects of Superstructure Flexibility on the Response of Base-Isolated Structures
,”
Shock Vib. Dig.
0583-1024,
10
, pp.
1
13
.
55.
Hanawa
,
Y.
, and
Shimizu
,
N.
, 2002, “
Statistical Seismic Response Analysis of Piping System With a Teflon Friction Support
,”
JSME Int. J., Ser. C
1340-8062,
45
, pp.
393
401
.
56.
Igusa
,
T.
, and
Sinha
,
R.
, 1991, “
Response Analysis of Secondary Systems With Nonlinear Supports
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
524
531
.
57.
Colangelo
,
F.
,
Giannini
,
R.
, and
Pinto
,
P. E.
, 1996, “
Seismic Reliability Analysis of Reinforced Concrete Structures With Stochastic Properties
,”
Struct. Safety
0167-4730,
18
, pp.
151
168
.
58.
Koliopulos
,
P. K.
,
Nichol
,
E. A.
, and
Stefanou
,
G. D.
, 1994, “
Comparative Performance of Equivalent Linearization Techniques for Inelastic Seismic Design
,”
Eng. Struct.
0141-0296,
16
, pp.
5
10
.
59.
Koliopulos
,
P. K.
, and
Chandler
,
A. M.
, 1995, “
Stochastic Linearization of Inelastic Seismic Torsional Response-Formulation And Case-Studies
,”
Eng. Struct.
0141-0296,
17
, pp.
494
504
.
60.
Koliopulos
,
P. K.
, 1988, “
Quasi-Static and Dynamic Response Statistics of Linear SDOF Systems Under Morison-Type Wave Forces
,”
Eng. Struct.
0141-0296,
10
, pp.
24
36
.
61.
Koliopulos
,
P. K.
, 1990, “
Application of the Separability Assumption on The Statistics of Linear SDOF Systems Under Square-Gaussian Excitation
,”
Appl. Math. Model.
0307-904X,
14
, pp.
184
198
.
62.
Basu
,
B.
, and
Gupta
,
V. K.
, 1996, “
A Note on Damage-Based Inelastic Spectra
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
25
, pp.
421
433
.
63.
Gupta
,
V. K.
, and
Trifunac
,
M.
, 1988, “
Order Statistics of Peaks Earthquake Response
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1605
1627
.
64.
Chen
,
Y. Q. Q.
, 1993, “
Modification of Floor Response Spectrum Based on Stochastic Sensitivity Analysis
,”
Eng. Struct.
0141-0296,
15
, pp.
40
46
.
65.
Pires
,
J. A.
, 1996, “
Stochastic Seismic Response Analysis of Soft Soil Sites
,”
Nucl. Eng. Des.
0029-5493,
160
, pp.
363
377
.
66.
Pagnini
,
L. C.
, and
Solari
,
G.
, 1999, “
Stochastic Analysis of the Linear Equivalent Response of Bridge Piers With Aseismic Devices
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
28
, pp.
543
560
.
67.
Zhu
,
W. Q.
,
Huang
,
C. D.
, and
Soong
,
T. T.
, 1994, “
Response and Reliability of Secodary Systems in Yielding Structures
,”
Probab. Eng. Mech.
0266-8920,
9
, pp.
145
155
.
68.
Huang
,
C. D.
,
Zhu
,
W. Q.
, and
Soong
,
T. T.
, 1994, “
Nonlinear Stochastic Response and Reliability of Secondary Systems
,”
J. Eng. Mech.
0733-9399,
120
, pp.
177
196
.
69.
Takewaki
,
I.
, 2001, “
Probabilistic Critical Excitation for MDOF Elastic-Plastic Structures on Compliand Ground
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
30
, pp.
1345
1360
.
70.
Aoki
,
S.
, 2002, “
Simplified Estimation Method for First Excursion Probability of Secondary System With Gap
,”
Nucl. Eng. Des.
0029-5493,
212
, pp.
193
199
.
71.
Hurtado
,
J. E.
, and
Barbat
,
A. H.
, 1996, “
Improved Stochastic Linearization Method Using Mixed Distributions
,”
Struct. Safety
0167-4730,
18
, pp.
49
62
.
72.
Hurtado
,
J. E.
, and
Barbat
,
A. H.
, 2000, “
Equivalent Linearization of the Bouc-Wen Hysteretic Model
,”
Eng. Struct.
0141-0296,
22
, pp.
1121
1132
.
73.
Duval
,
L.
, et al.
, 1999, “
Zero and Non-Zero Mean Analysis of MDOF Hysteretic Systems Via Direct Linearization
,”
Stochastic Structural Dynamics
,
B. F.
Spencer
and
E. A.
Johnson
eds.,
Balkema
, Rotterdam, pp.
77
84
.
74.
Vasta
,
M.
, and
Schuëller
,
G. I.
, 2000, “
Phase Space Reduction In Stochastic Dynamics
,”
J. Eng. Mech.
0733-9399,
126
, pp.
626
632
.
75.
Micaletti
,
R. C.
,
Cakmak
,
A. S.
,
Nielsen
,
S. R. K.
, and
Koyluoglu
,
H. U.
, 1998, “
Error Analysis of Statistical Linearization With Gaussian Closure for Large-Degree-of-Freedom Systems
,”
Probab. Eng. Mech.
0266-8920,
13
, pp.
77
84
.
76.
Pandey
,
M. D.
, 1995, “
Stochastic-Analysis of Structures With Passive Seismic Control
,”
Can. J. Civ. Eng.
0315-1468,
22
, pp.
970
980
.
77.
Yang
,
J. N.
,
Li
,
Z.
, and
Vongchavalitkul
,
S.
, 1994, “
Stochastic Hybrid Control of Hysteretic Structures
,”
Probab. Eng. Mech.
0266-8920,
9
, pp.
125
133
.
78.
Suzuki
,
Y.
, 1995, “
Stochastic Control of Hysteretic Structural Systems
,”
Sadhana: Proc., Indian Acad. Sci.
0256-2499,
20
, pp.
475
488
.
79.
Xu
,
Y. L.
,
Samali
,
B.
, and
Kwok
,
K. C. S.
, 1992, “
Control of Along-Wind Response of Structures by Mass and Liquid Dampers
,”
J. Eng. Mech.
0733-9399,
118
, pp.
20
39
.
80.
Xu
,
Y. L.
,
Kwok
,
K. C. S.
, and
Samali
,
B.
, 1992, “
The Effect of Tuned Mass Dampers and Liquid Dampers on Corrs-Wind Response of Tall Slender Structures
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
40
, pp.
33
54
.
81.
Zhang
,
X. T.
,
Zhang
,
R. C.
, and
Xu
,
Y. L.
, 1993, “
Analysis on Control of Flow-Induced Vibration by Tuned Liquid Damper With Crossed Tube-Like Containers
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
50
, pp.
351
360
.
82.
Xu
,
Y. L.
, and
Shum
,
K. M.
, 2003, “
Multiple-Tuned Liquid Column Dampers for Torsional Vibration Control of Structures: Theoretical Investigation
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
32
, pp.
309
328
.
83.
Chen
,
Y.
, and
Ahmadi
,
G.
, 1992, “
Wind Effects on Base-Isolated Structures
,”
J. Eng. Mech.
0733-9399,
118
, pp.
1708
1727
.
84.
Kareem
,
A.
, and
Li
,
Y. S.
, 1993, “
Wind-Excited Surge Response of Tension-Leg Platform-Frequency-Domain Approach
,”
J. Eng. Mech.
0733-9399,
119
, pp.
161
183
.
85.
Qian
,
J.
, and
Wang
,
X.
, 1992, “
3-Dimensional Stochastic Response of Offshore Towers Random Sea Waves
,”
Comput. Struct.
0045-7949,
43
, pp.
385
390
.
86.
Liu
,
Y.
, and
Bergdahl
,
L.
, 1997, “
Influence of Current and Seabed Fricion on Mooring Cable Response: Comparison Between Time-Domain And Frequency-Domain Analysis
,”
Eng. Struct.
0141-0296,
19
, pp.
945
953
.
87.
Sarkar
,
A.
, and
Taylor
,
R. E.
, 2002, “
Dynamics of Mooring Cables in Random Seas
,”
J. Fluids Struct.
0889-9746,
16
, pp.
193
212
.
88.
Benfratello
,
S.
, and
Falsone
,
G.
, 1995, “
Non-Gaussian Approach for Stochastic Analysis of Offshore Structures
,”
J. Eng. Mech.
0733-9399,
121
, pp.
1173
1180
.
89.
Quek
,
S. T.
,
Li
,
X. M.
, and
Koh
,
C. G.
, 1994, “
Stochastic Response of Jack-Up Platform by the Method for Statistical Quadratization
,”
Appl. Ocean. Res.
0141-1187,
16
, pp.
113
122
.
90.
Li
,
X. M.
,
Quek
,
S. T.
, and
Koh
,
C. G.
, 1995, “
Stochastic Response of Offshore Platform by Statistical Cubization
,”
J. Eng. Mech.
0733-9399,
121
, pp.
1056
1068
.
91.
Kareem
,
A.
,
Zhao
,
J.
, and
Tognarlli
,
M. A.
, 1995, “
Surge Response Statistics of Tension Leg Platforms Under Wind and Wave Loads: A Statistical Quadratization Approach
,”
Probab. Eng. Mech.
0266-8920,
10
, pp.
225
240
.
92.
Tognarelli
,
M. A.
,
Zhao
,
J.
, and
Kareem
,
A.
, 1997, “
Equivalent Statistical Qubicization for System and Forcing Nonlinearization
,”
J. Eng. Mech.
0733-9399,
123
, pp.
890
893
.
93.
Wolfram
,
J.
, 1999, “
On Alternative Approaches to Linearization and Morison’s Equation for Wave Forces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
2957
2974
.
94.
Zhang
,
J. J.
, and
Knothe
,
K.
, 1996, “
Statistical Linearization of Wheel Rail Contact Nonlinearities for Investigation of Curving Behaviour With Random Track Irregularities
,”
Veh. Syst. Dyn.
0042-3114,
25
, pp.
731
745
.
95.
Oblak
,
M. M.
,
Lesnika
,
A. S.
, and
Butinar
,
B. J.
, 2002, “
Optimum Design of Stochastically Excited Non-Linear Dynamic Systems Without Geometric Constrains
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
2429
2443
.
96.
Narayanan
,
S.
, and
Raju
,
G. V.
, 1992, “
Active Control of Nonstationary Response of Vehicles With Nonlinear Suspensions
,”
Veh. Syst. Dyn.
0042-3114,
21
, pp.
73
87
.
97.
Raju
,
G. V.
, and
Narayanan
,
S.
, 1995, “
Active Control of Nonstationary Response of a 2-Degree of Freedom Vehicle Model With Nonlinear Suspension
,”
Sadhana: Proc., Indian Acad. Sci.
0256-2499,
20
, pp.
489
499
.
98.
Narayanan
,
S.
, and
Senthil
,
S.
, 1998, “
Stochastic Optimal Active Control of a 2-Dof Quarter Car Model With Non-Linear Passive Suspension Elements
,”
J. Sound Vib.
0022-460X,
211
, pp.
495
506
.
99.
Socha
,
L.
, 1999, “
Active Control of Nonlinear 2-Degree of Freedom Vehicle Suspension Under Stochastic Excitations
,”
Smaart Structures
,
J.
Holnicki-Szulc
and
J.
Rodellar
, eds.,
Kluwer Academic
, Dordrecht, pp.
321
327
.
100.
Socha
,
L.
, 2000, “
Application of Statistical Linearization Techniques to Design of Quasi-Optimal Control of Nonlinear Systems
,”
Theor Appl. Mech.
0285-6042,
38
, pp.
591
605
.
101.
Foliente
,
G. C.
,
Singh
,
M. P.
, and
Dolan
,
J. D.
, 1996, “
Response Analysis of Wood Structures Under Natural Hazard Dynamic Loads
,”
Wood Fiber Sci.
0735-6161,
28
, pp.
110
127
.
102.
Facchini
,
L.
,
Gusella
,
V.
, and
Spinelli
,
P.
, 1994, “
Block Random Rocking and Seismic Vulnerability Estimation
,”
Eng. Struct.
0141-0296,
16
, pp.
412
424
.
103.
Ellison
,
J.
,
Ahmadi
,
G.
, and
Grodsinsky
,
C.
, 1997, “
Stochastic Response of Pasive Vibration Control Systems to G-Jitter Excitation, Microgravity
,”
Microgravity Sci. Technol.
0938-0108,
10
, pp.
2
12
.
104.
Bennett
,
A. F.
, and
Thorburn
,
M. A.
, 1992, “
The Generalized Inverse of a Nonlinear Quasi-Geostrophic Ocean Circulation Model
,”
J. Phys. Oceanogr.
0022-3670,
22
, pp.
213
230
.
105.
Evensen
,
G.
, 1992, “
Using the Extended Kalman Filter With a Multilayer Quasi-Geostrophic Ocean Model
,”
J. Geophys. Res.
0148-0227,
97
, pp.
17905
17924
.
106.
Bukhanovskii
,
A. V.
et al.
, 1998, “
Probabilistic Modelling of Sea Wave Climate
,”
Izv. AN Fiz. Atmos. Ok+
,
34
, pp.
261
266
.
107.
Lei
,
J. H.
, and
Schilling
,
W.
, 1994, “
Parameter Uncertainty Propagation Analysis for Urban Rainfall-Runoff Modelling
,”
Water Sci. Technol.
0273-1223,
29
, pp.
145
154
.
108.
Inaudi
,
J. A.
,
Leitmann
,
G.
, and
Kelly
,
J. M.
, 1994, “
Single-Degree-of-Freedom Nonlinear Homogeneous Systems
,”
J. Eng. Mech.
0733-9399,
120
, pp.
1543
1562
.
109.
Inaudi
,
J. A.
, and
Kelly
,
J. M.
, 1995, “
Mass Damper Using Friction-Dissipating Devices
,”
J. Eng. Mech.
0733-9399,
121
, pp.
142
149
.
110.
Bellizzi
,
S.
,
Bouc
,
R.
, and
Defilippi
,
M.
, 1998, “
Response Spectral Densities and Identification of a Randomly Exited Non-Linear Squeeze Film Oscillator
,”
Mech. Syst. Signal Process.
0888-3270,
12
, pp.
693
711
.
111.
Cha
,
D.
, and
Sinha
,
A.
, 2003, “
Computational of the Optimal Normal Load of a Friction Damper Under Different Types Exitation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
1042
1049
.
112.
Spanos
,
P. D.
,
Chevallier
,
A. M.
, and
Politis
,
N. P.
, 2002, “
Nonlinear Stochastic Drill-String Vibrations
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
512
518
.
113.
Chaudhary
,
A. K.
,
Bhatia
,
V. B.
,
Das
,
M. K.
, and
Tavakol
,
R. K.
, 1995, “
Statistical Response of Randomly Excited Nonlinear Radial Oscillations in Polytropes
,”
J. Astrophys. Astron.
0250-6335,
16
, pp.
45
52
.
114.
Spanos
,
P. T. D.
, 1981, “
Stochastic Linearization in Structural Dynamics
,”
Appl. Mech. Rev.
0003-6900,
34
, pp.
1
8
.
115.
Roberts
,
J. B.
, 1981, “
Response of Nonlinear Mechanical Systems to Random Excitation, Part 2: Equivalent Linearization and Other Methods
,”
Shock Vib. Dig.
0583-1024,
13
, pp.
15
29
.
116.
Schuëller
,
G. I.
,
Pradlwarter
,
H. J.
,
Vasta
,
M.
, and
Harnpornchai
,
N.
, 1999, “
Benchmark Study On Non-Linear Stochastic Structural Dynamics
,”
Proc. of Seventh Int. Conf. on Structural Safety and Reliability
,
N.
Shiraishi
,
M.
Shinozuka
, and
Y. K.
Wen
, eds.,
Balkema
, Rotterdam.
117.
Pradlwarter
,
H. J.
,
Schuëller
,
G. I.
, and
Schenk
,
C. A.
, 2003, “
A Computational Procedure to Estimate the Stochastic Dynamic Response of Large Nonlinear FE—Models
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
777
801
.
118.
Zhang
,
X. T.
,
Elishakoff
,
I.
, and
Zhang
,
R. C. h.
, 1991, “
A New Stochastic Linearization Technique Based on Minimum Mean-Square Deviation of Potential Energies
,”
Stochastic Structural Dynamics—New Theoretical Developments
,
Y. K.
Lin
and
I.
Elishakoff
, eds.,
Springer-Verlag
, Berlin, pp.
327
338
.
119.
Elishakoff
,
I.
, 1991, “
Method of Stochastic Linearization: Revisited and Improved
,”
Computational Stochastic Mechanics
,
P. D.
Spanos
and
C. A.
Brebbia
, eds.,
Computational Mechanics Publication and Elsevier Applied Science
, London, pp.
101
111
.
120.
Ismaili
,
M. A.
, and
Bernard
,
P.
, 1997, “
Asymptotic Analysis and Linearization of the Randomly Perturbed Two-Wells Duffing Oscillator
,”
Probab. Eng. Mech.
0266-8920,
12
, pp.
171
178
.
121.
Ricciardi
,
G.
, and
Elishakoff
,
I.
, 2002, “
A Novel Local Stochastic Linearization Method via Two Extremum Entropy Principles
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
785
800
.
You do not currently have access to this content.