Research Papers

Computational Fluid Dynamic Simulation of the Moderator Flow in CANDU-6 Nuclear Reactors

[+] Author and Article Information
Foad Mehdi Zadeh

Department of Engineering Physics,
Polytechnique Montréal,
Montréal, Québec H3T 1J4, Canada
e-mail: foad.mehdi-zadeh@polymtl.ca

Stéphane Etienne

Department of Mechanical Engineering,
Polytechnique Montréal,
Montréal, Québec H3T 1J4, Canada
e-mail: stephane.etienne@polymtl.ca

Alberto Teyssedou

Department of Engineering Physics,
Polytechnique Montréal,
Montréal, Québec H3T 1J4, Canada
e-mail: alberto.teyssedou@polymtl.ca

1Corresponding author.

Manuscript received October 9, 2015; final manuscript received February 18, 2016; published online December 20, 2016. Assoc. Editor: Andrey Churkin.

ASME J of Nuclear Rad Sci 3(1), 011010 (Dec 20, 2016) (13 pages) Paper No: NERS-15-1207; doi: 10.1115/1.4032874 History: Received October 09, 2015; Accepted February 21, 2016

For CANada Deuterium Uranium (CANDU) nuclear reactors, the characterization of the moderator thermal-hydraulic behavior under both normal and abnormal operating conditions constitutes an important safety issue. For normal operating conditions, the flow temperature distribution may produce changes on the heavy-water mass density, which in turn may affect the neutron moderation rate. Consequently, these variations influence the thermal neutron flux distribution in the reactor core. Therefore, it is fundamental to know all possible moderator flow configurations as well as the corresponding temperature distributions. In particular, any possibility of a dryout at the external wall of the Calandria tubes and consequently excessive temperature excursions must be prevented. Within this framework, this paper presents detailed two-dimensional (2D) numerical steady-state simulations for a wide range of flow conditions. Both the accuracy of the numerical approximations and the validity of some physical models used in computational fluid dynamic (CFD) codes are assessed. The numerical results are then used to construct a cartographical representation of moderator flows in CANDU-6 reactors. To support the existence of coherent flow asymmetries and eventually flow-structure oscillations, the present numerical results are also compared with the previous ones obtained using a porous medium-modeling approach.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


IAEA, “Power Reactor Information System,” http://www.iaea.org/PRIS/WorldStatistics/OperationalReactorsByCountry.aspx (Accessed: Apr. 1, 2014).
Cacuci, D. G., 2010, Handbook of Nuclear Engineering, Springer.
Carlucci, L., 1982, “Numerical Simulation of Moderator Flow and Temperature Distributions in a CANDU Reactor Vessel,” Proceedings of La Modélisation fine des Écoulements, Presses de l'école nationale des ponts et chaussées, Paris, pp. 533–543, ISBN: 2829780467.
Gosman, A., and Pun, W., 1974, “Calculation of Recirculating Flows,” Imperial College, London, .
Mandal, J. C., and Sonawane, C. R., 2014, “Simulation of Moderator Flow and Temperature Inside Calandria of CANDU Reactor Using Artificial Compressibility Method,” Heat Transfer Eng., 35(14–15), pp. 1254–1266. 0145-7632 10.1080/01457632.2013.876802
Szymanski, J., Garceau, M., Ng, K., and Midvidy, W., 1983, “Numerical Modelling of Three-Dimensional Turbulent Moderator Flow in Calandria,” Proceedings of Numerical Methods in Nuclear Engineering, Vol. 1, Canadian Nuclear Society, Montréal, pp. 970–84.
Carlucci, L., and Cheung, I., 1986, “The Effects of Symmetric/Asymmetric Boundary Conditions on the Flow of an Internally Heated Fluid,” Numer. Methods Part. Diff. Equat., 2(1), pp. 47–61. 10.1002/(ISSN)1098-2426
Huget, R., Szymanski, J., and Midvidy, W., 1989, “Status of Physical and Numerical Modelling of CANDU Moderator Circulation,” Proceedings of 10th Annual Conference of the Canadian Nuclear Society, Canadian Nuclear Society, Ottawa, ON.
Huget, R., Szymanski, J., Galpin, P., and Midvidy, W., 1990. “Modturc_clas: An Efficient Code for Analyses of Moderator Circulation in CANDU Reactors,” Proceedings of 3rd International Conference on Simulation Methods in Nuclear Engineering, Canadian Nuclear Society, Montreal.
Carlucci, L., Agranat, V., Waddington, G., Khartabil, H., and Zhang, J., 2000. “Predicted and Measured Flow and Temperature Distribution in a Facility for Simulating In-Reactor Moderator Circulation,” Proceedings of 8th International Conference of CFD Canada, CFD Society of Canada, Montreal.
Yoon, C., Rhee, B. W., and Min, B.-J., 2004, “3D CFD Analysis of the CANDU-6 Moderator Circulation Under Normal Operating Conditions,” J. Korean Nucl. Soc, 36(6), pp. 559–570. 0372-7327
Yoon, C., Rhee, B. W., and Min, B.-J., 2004, “Development and Validation of the 3-D Computational Fluid Dynamics Model for CANDU-6 Moderator Temperature Predictions,” Nucl. Technol., 148(3), pp. 259–267. 0029-5450
Yoon, C., and Park, J. H., 2008, “Development of a CFD Model for the CANDU-6 Moderator Analysis Using a Coupled Solver,” Ann. Nucl. Energy, 35(6), pp. 1041–1049. 10.1016/j.anucene.2007.11.013
Arsene, R., Prisecaru, I., and Nicolici, Ş., 2013, “Improvement of the Thermalhydraulic Characteristics in the Calandria Vessel of a CANDU 6 Nuclear Reactor,” UPB Sci. Bull., 75(4), pp. 251–262.
Rhee, B. W., and Kim, H. T., 2014. “A Review of the Scaling Study of the CANDU-6 Moderator Circulation Test Facility,” J. Power Energy Eng., 2(09), pp. 64–73. 10.4236/jpee.2014.29010
Kim, M., Yu, S.-O., and Kim, H.-J., 2006. “Analyses on Fluid Flow and Heat Transfer Inside Calandria Vessel of CANDU-6 Using CFD,” Nucl. Eng. Des., 236(11), pp. 1155–1164. 10.1016/j.nucengdes.2005.10.018
Sarchami, A., Ashgriz, N., and Kwee, M., 2014, “Three Dimensional Numerical Simulation of a Full Scale CANDU Reactor Moderator to Study Temperature Fluctuations,” Nucl. Eng. Des., 266, pp. 148–154. 10.1016/j.nucengdes.2013.11.042
Farhadi, F., Ashgriz, N., Kwee, M., Girard, R., Parlatan, Y., and Ali, M., 2009. “Temperature Fluctuations in a CANDU Moderator Test Facility,” Proceeding of International Conference on Nuclear Engineering, ASME, Brussels, pp. 569–577.
Kim, H. T., and Rhee, B. W., 2015, “Scaled-Down Moderator Circulation Test Facility at Korea Atomic Energy Research Institute,” Sci. Technol. Nucl. Installations, pp. 1–10, Article ID 760870, in press.
Chorin, A. J., 1967, “A Numerical Method for Solving Incompressible Viscous Flow Problems,” J. Comput. Phys., 2(1), pp. 12–26. 10.1016/0021-9991(67)90037-X
Fluid Dynamics, Power Generation and Environment Department, Single Phase Thermal-Hydraulics Group, Code_Saturne 3.0.0 Theory Guide, http://code-saturne.org/cms/sites/default/files/theory-3.0.pdf (Accessed: Feb. 10, 2014).
Boussinesq, J., 1901, Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, Vol. 1, Gauthier-Villars, Paris, France.
Gray, D. D., and Giorgini, A., 1976. “The Validity of the Boussinesq Approximation for Liquids and Gases,” Int. J. Heat Mass Transfer, 19(5), pp. 545–551. 10.1016/0017-9310(76)90168-X
Nero, A. V., 1979. A Guidebook to Nuclear Reactors, University of California Press, Berkeley and Los Angeles, CA.
Archambeau, F., Méchitoua, N., and Sakiz, M., 2004. “Code Saturne: A Finite Volume Code for the Computation of Turbulent Incompressible Flows-Industrial Applications,” Int. J. Finite Vol., 1(1), pp. 1–62.
Favre, A., 1976, La turbulence en mécanique des fluids, Gauthier-Villars, Paris, France.
Teyssedou, A., Necciari, R., Reggio, M., Mehdi Zadeh, F., and Etienne, S., 2014. “Moderator Flow Simulation Around Calandria Tubes of CANDU-6 Nuclear Reactor,” Eng. Appl. Comput. Fluid Mech., 8(1), pp. 178–192.
Launder, B. E., and Spalding, D., 1974, “The Numerical Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3(2), pp. 269–289. 10.1016/0045-7825(74)90029-2
Van Doormaal, J., and Raithby, G., 1984, “Enhancements of the Simple Method for Predicting Incompressible Fluid Flows,” Numer. Heat Transfer, 7(2), pp. 147–163. 10.1080/01495728408961817
Bouquillon, M., 2008, “Modélisation numérique de jets et leurs applications dans la simulation des écoulements dans la cuve du modérateur du réacteur CANDU,” M.Sc. Thesis, Polytechnique Montréal.
Rozon, D., 2007, Gestion du combustible nucléaire, Polytechnique Montréal, .
Sarchami, A., 2011, “Investigation of Thermal Hydraulics of a Nuclear Reactor Moderator,” Ph.D. Thesis, University of Toronto.
Richardson, L. F., 1911, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam,” Philosophical Transactions of the Royal Society of London. Series A: Containing Papers of a Mathematical or Physical Character, The Royal Society Publishing, pp. 307–357.
Celik, I., 2004, “Procedure for Estimation and Reporting of Discretization Error in CFD Aaplications,” ASME J. Fluids Eng., 1(06), pp. 2008.
Paul, S. S., 2007, “Experimental and Numerical Studies of Turbulent Cross-Flow in a Staggered Tube Bundle,” M.Sc. Thesis, University of Manitoba.
Paul, S., Tachie, M., and Ormiston, S., 2007, “Experimental Study of Turbulent Cross-Flow in a Staggered Tube Bundle Using Particle Image Velocimetry,” Int. J. Heat Fluid Flow, 28(3), pp. 441–453. 10.1016/j.ijheatfluidflow.2006.06.001
Ansys, 2009, Ansys Fluent 12.0 Users Guide, Ansys Inc, Canonsbug, PA.
Paul, S., Ormiston, S., and Tachie, M., 2008, “Experimental and Numerical Investigation of Turbulent Cross-Flow in a Staggered Tube Bundle,” Int. J. Heat Fluid Flow, 29(2), pp. 387–414. 10.1016/j.ijheatfluidflow.2007.10.001
Manzer, A., 1979, “Design Manual Gentilly-2 Nuclear Generating Station,” Atomic Energy of Canada Limited, .


Grahic Jump Location
Fig. 1

Validity of the Boussinesq approximation at T0=71°C (nominal CANDU-6 operating value); where ϵ9 is calculated by Eq. (5), the coefficient 1044 has units of m/°C. The temperature difference is calculated with respect to the outlet moderator condition.

Grahic Jump Location
Fig. 2

Cross-sectional view of the Calandria vessel of a CANDU-6 nuclear power reactor

Grahic Jump Location
Fig. 3

Grid topology around (a) Calandria tubes and (b) water injectors

Grahic Jump Location
Fig. 4

Typical averaged channel thermal power [31]

Grahic Jump Location
Fig. 5

Experimental setup and positions of the measurement planes given in Paul [35] and Paul et al. [36]

Grahic Jump Location
Fig. 6

Comparison of simulated lateral velocity profile with data of Paul et al. [36,38]: (a) x/d=1.25, (b) x/d=3.35, (c) x/d=5.45, and (d) x/d=7.55

Grahic Jump Location
Fig. 7

Expected moderator flow configurations: (a) momentum-dominated, (b) mixed-type, and (c) buoyancy-dominated

Grahic Jump Location
Fig. 8

Sampled values for the inertia-dominated configuration (Ri=0.008): 1, y=+1.43  m; 2, y=0  m; 3, y=−1.43  m; 4, x=+1.43  m; 5, x=0  m; and 6, x=−1.43  m

Grahic Jump Location
Fig. 9

Sampled values for mixed-type configuration (Ri=0.07): 1, y=+1.43  m; 2, y=0  m; 3, y=−1.43  m; 4, x=+1.43  m; 5, x=0  m; and 6, x=−1.43  m

Grahic Jump Location
Fig. 10

Sampled values for buoyancy-dominated configuration (Ri=0.23): 1, y=+1.43  m; 2, y=0  m; 3, y=−1.43  m; 4, x=+1.43  m; 5, x=0  m; and 6, x=−1.43  m

Grahic Jump Location
Fig. 11

Qualitative comparison of velocity vectors for Ri=0.05: (a) predicted by Code_Saturne and (b) predicted by MODTURC [7]

Grahic Jump Location
Fig. 12

Moderator flow configuration map. (a) Proposed by Carlucci and Cheung [7] and (b) present work using Code_Saturne.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In