Research Papers

The Study of Nanosized Cu–Mn Precipitates Contribution to Hardening in Body Centered Cubic Fe Matrix

[+] Author and Article Information
YanKun Dou

China Institute of Atomic Energy,
Fangshan District,
Beijing 102413, China
e-mail: douyankun3@163.com

XinFu He

China Institute of Atomic Energy,
Fangshan District,
Beijing 102413, China
e-mail: hexinfu@ciae.ac.cn

DongJie Wang

China Institute of Atomic Energy,
Fangshan District,
Beijing 102413, China
e-mail: w1992dongjie@163.com

Wu Shi

China Institute of Atomic Energy,
Fangshan District,
Beijing 102413, China
e-mail: wushi46@qq.com

LiXia Jia

China Institute of Atomic Energy,
Fangshan District,
Beijing 102413, China
e-mail: lxjia@ciae.ac.cn

Wen Yang

China Institute of Atomic Energy,
Fangshan District,
Beijing 102413, China
e-mail: yangwen@ciae.ac.cn

1Corresponding author.

Manuscript received October 26, 2017; final manuscript received April 5, 2018; published online September 10, 2018. Assoc. Editor: Akos Horvath.

ASME J of Nuclear Rad Sci 4(4), 041007 (Sep 10, 2018) (6 pages) Paper No: NERS-17-1194; doi: 10.1115/1.4039969 History: Received October 26, 2017; Revised April 05, 2018

In order to study the contribution of manganese (Mn) atoms in copper (Cu) precipitates to hardening in body centered cubic (BCC) structure iron (Fe) matrix, the interactions of a 1/2 〈111〉 {110} edge dislocations with nanosized Cu and Cu–Mn precipitates in BCC Fe have been investigated by using molecular dynamics method (MD). The results indicate that the critical resolved shear stresses (τc) of the Cu–Mn precipitates are larger than that of Cu precipitates. Meanwhile, τc of the Cu–Mn precipitates show a much more significant dependence on temperature and size compared to Cu precipitates. Mn atoms exhibit strong attraction to dislocation segment in Cu precipitate and improve the fraction of transformed atoms from BCC phase to nine rhombohedron (R) phase for big size precipitates. Those all lead to the higher resistance to the dislocation glide. Eventually, these features confirmed that the appearance of Mn atoms in Cu precipitates greatly facilitates the hardening in BCC Fe matrix.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Lambrecht, M. , Malerba, L. , and Almazouzi, A. , 2008, “ Influence of Different Chemical Elements on Irradiation-Induced Hardening Embrittlement of RPV Steels,” J. Nucl. Mater., 378(3), pp. 282–290. [CrossRef]
Debarberis, L. , Sevini, F. , Acosta, B. , Kryukov, A. , Nikolaev, Y. , Amaev, A. D. , and Valo, M. , 2002, “ Irradiation Embrittlement of Model Alloys and Commercial Steels: Analysis of Similitude Behaviors,” Int. J. Pressure Vessels Piping, 79(8), pp. 637–642. [CrossRef]
Kryukov, A. , Debarberis, L. , Von Estorff, U. , Gillemot, F. , and Oszvald, F. , 2012, “ Irradiation Embrittlement of Reactor Pressure Vessel Steel at Very High Neutron Fluence,” J. Nucl. Mater., 422(1–3), pp. 173–177. [CrossRef]
Ahlstrand, R. , Bièth, M. , and Rieg, C. , 2004, “ Neutron Embrittlement of VVER Reactor Pressure Vessels-Recent Results, Open Issues and New Developments,” Nucl. Eng. Des., 230(1–3), pp. 267–275. [CrossRef]
Gurovich, B. , Kuleshova, E. , Zabusov, O. , Fedotova, S. , Frolov, A. , Saltykov, M. , and Maltsev, D. , 2013, “ Influence of Structural Parameters on the Tendency of VVER-1000 Reactor Pressure Vessel Steel to Temper Embrittlement,” J. Nucl. Mater., 435(1–3), pp. 25–31. [CrossRef]
Harry, T. , and Bacon, D. J. , 2002, “ Computer Simulation of the Core Structure of the< 111> Screw Dislocation in α-Iron Containing Copper Precipitates—II: Dislocation–Precipitate Interaction and the Strengthening Effect,” Acta Mater., 50(1), pp. 209–222. [CrossRef]
Meslin, E. , Radiguet, B. , Pareige, P. , and Barbu, A. , 2010, “ Kinetic of Solute Clustering in Neutron Irradiated Ferritic Model Alloys and a French Pressure Vessel Steel Investigated by Atom Probe Tomography,” J. Nucl. Mater., 399(2–3), pp. 137–145. [CrossRef]
Miller, M. K. , Sokolov, M. A. , Nanstad, R. K. , and Russell, K. F. , 2006, “ APT Characterization of High Nickel RPV Steels,” J. Nucl. Mater., 351(1–3), pp. 187–196. [CrossRef]
Kotrechko, S. , Dubinko, V. , Stetsenko, N. , Terentyev, D. , He, X. , and Sorokin, M. , 2015, “ Temperature Dependence of Irradiation Hardening Due to Dislocation Loops and Precipitates in RPV Steels and Model Alloys,” J. Nucl. Mater., 464, pp. 6–15. [CrossRef]
Chaouadi, R. , and Gérard, R. , 2005, “ Copper Precipitate Hardening of Irradiated RPV Materials and Implications on the Superposition Law and Re-Irradiation Kinetics,” J. Nucl. Mater., 345(1), pp. 65–74. [CrossRef]
Isheim, D. , Gagliano, M. S. , Fine, M. E. , and Seidman, D. N. , 2006, “ Interfacial Segregation at Cu-Rich Precipitates in a High-Strength Low-Carbon Steel Studied on a Sub-Nanometer Scale,” Acta Mater., 54(3), pp. 841–849. [CrossRef]
Jiao, Z. B. , Luan, J. H. , Zhang, Z. W. , Miller, M. K. , Ma, W. B. , and Liu, C. T. , 2013, “ Synergistic Effects of Cu and Ni on Nanoscale Precipitation and Mechanical Properties of High-Strength Steels,” Acta Mater., 61(16), pp. 5996–6005. [CrossRef]
Zhang, C. , and Enomoto, M. , 2006, “ Study of the Influence of Alloying Elements on Cu Precipitation in Steel by Non-Classical Nucleation Theory,” Acta Mater., 54(16), pp. 4183–4191. [CrossRef]
Xie, Y. P. , and Zhao, S. J. , 2014, “ The Segregation Behavior of Manganese and Silicon at the Coherent Interfaces of Copper Precipitates in Ferritic Steels,” J. Nucl. Mater., 445(1–3), pp. 43–49. [CrossRef]
Osetsky, Y. N. , and Bacon, D. J. , 2003, “ An Atomic-Level Model for Studying the Dynamics of Edge Dislocations in Metals,” Modell. Simul. Mater. Sci. Eng., 11(4), pp. 427–446. [CrossRef]
Othen, P. J. , Jenkins, M. L. , and Smith, G. D. W. , 1994, “ High-Resolution Electron Microscopy Studies of the Structure of Cu Precipitates in α-Fe,” Philos. Mag. A, 70(1), pp. 1–24. [CrossRef]
Lv, G. , Zhang, H. , He, X. , Yang, W. , and Su, Y. , 2015, “ Atomistic Simulation of Cu–Ni Precipitates Hardening in α-Iron,” J. Phys. D: Appl. Phys., 48(11), p. 115302. [CrossRef]
Terentyev, D. , Malerba, L. , Bonny, G. , Al-Motasem, A. T. , and Posselt, M. , 2011, “ Interaction of an Edge Dislocation With Cu–Ni-Vacancy Clusters in BCC Iron,” J. Nucl. Mater., 419(1–3), pp. 134–139. [CrossRef]
Gorbatov, O. I. , Gornostyrev, Y. N. , Korzhavyi, P. A. , and Ruban, A. V. , 2015, “ Effect of Ni and Mn on the Formation of Cu Precipitates in α-Fe,” Scr. Mater., 102, pp. 11–14. [CrossRef]
Maury, F. , Lorenzelli, N. , and De Novion, C. H. , 1991, “ Influence of Mn and Ni on Cu Precipitation in Dilute Iron Alloys During Electron Irradiation: A Small-Angle Neutron Scattering Study,” J. Nucl. Mater., 183(3), pp. 217–220. [CrossRef]
Bonny, G. , Terentyev, D. , Bakaev, A. , Zhurkin, E. E. , Hou, M. , Van Neck, D. , and Malerba, L. , 2013, “ On the Thermal Stability of Late Blooming Phases in Reactor Pressure Vessel Steels: An Atomistic Study,” J. Nucl. Mater., 442(1–3), pp. 282–291. [CrossRef]
Mendelev, M. I. , Han, S. , Srolovitz, D. J. , Ackland, G. J. , Sun, D. Y. , and Asta, M. , 2003, “ Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron,” Philos. Mag., 83(35), pp. 3977–3994. [CrossRef]
Mishin, Y. , Mehl, M. J. , Papaconstantopoulos, D. A. , Voter, A. F. , and Kress, J. D. , 2001, “ Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations,” Phys. Rev. B, 63(22), p. 224106. [CrossRef]
Pasianot, R. C. , and Malerba, L. , 2007, “ Interatomic Potentials Consistent With Thermodynamics: The Fe–Cu System,” J. Nucl. Mater., 360(2), pp. 118–127. [CrossRef]
Bacon, D. J. , and Osetsky, Y. N. , 2009, “ Mechanisms of Hardening Due to Copper Precipitates in α-Iron,” Philos. Mag., 89(34–36), pp. 3333–3349. [CrossRef]
Olsson, P. , Klaver, T. P. C. , and Domain, C. , 2010, “ Ab Initio Study of Solute Transition-Metal Interactions With Point Defects in BCC Fe,” Phys. Rev. B, 81(5), p. 054102. [CrossRef]
Barashev, A. V. , and Arokiam, A. C. , 2006, “ Monte Carlo Modelling of Cu Atom Diffusion in α-Fe Via the Vacancy Mechanism,” Philos. Mag. Lett., 86(5), pp. 321–332. [CrossRef]
Bakaev, A. , Terentyev, D. , Bonny, G. , Klaver, T. P. C. , Olsson, P. , and Neck, D. V. , 2014, “ Interaction of Minor Alloying Elements of High-Cr Ferritic Steels With Lattice Defects: An Ab Initio Study,” J. Nucl. Mater., 444(1–3), pp. 237–246. [CrossRef]
Varschasky, A. , 1987, “ Ordering and Solute Segregation to Dislocations in Cu 20at.% Mn,” Mater. Sci. Eng., 89, pp. 119–128. [CrossRef]
Terentyev, D. , Malerba, L. , Bacon, D. J. , and Osetsky, Y. N. , 2007, “ The Effect of Temperature and Strain Rate on the Interaction Between an Edge Dislocation and an Interstitial Dislocation Loop in α-Iron,” J. Phys.: Condens. Matter, 19(45), p. 456211. [CrossRef]
Bacon, D. J. , and Osetsky, Y. N. , 2004, “ Hardening Due to Copper Precipitates in α-Iron Studied by Atomic-Scale Modeling,” J. Nucl. Mater., 329, pp. 1233–1237. [CrossRef]
Lee, T. H. , Kim, Y. O. , and Kim, S. J. , 2007, “ Crystallographic Model for BCC-to-9R Martensitic Transformation of Cu Precipitates in Ferritic Steel,” Philos. Mag., 87(2), pp. 209–224. [CrossRef]
Hu, S. Y. , Li, Y. L. , and Watanabe, K. , 1999, “ Calculation of Internal Stresses Around Cu Precipitates in the BCC Fe Matrix by Atomic Simulation,” Modell. Simul. Mater. Sci. Eng., 7(4), p. 641. [CrossRef]
Shim, J. H. , Kim, D. I. , Jung, W. S. , Cho, Y. W. , and Wirth, B. D. , 2009, “ Strengthening of Nanosized BCC Cu Precipitate in BCC Fe: A Molecular Dynamics Study,” Mater. Trans., 50(9), pp. 2229–2234. [CrossRef]
Osetsky, Y. N. , Bacon, D. J. , and Mohles, V. , 2003, “ Atomic Modelling of Strengthening Mechanisms Due to Voids and Copper Precipitates in α-Iron,” Philos. Mag., 83(31–34), pp. 3623–3641. [CrossRef]
Scattergood, R. O. , and Bacon, D. J. , 1982, “ The Strengthening Effect of Voids,” Acta Metall., 30(8), pp. 1665–1677. [CrossRef]
Bacon, D. J. , Kocks, U. F. , and Scattergood, R. O. , 1973, “ The Effect of Dislocation Self-Interaction on the Orowan Stress,” Philos. Mag., 28(6), pp. 1241–1263. [CrossRef]
Heo, Y. U. , Kim, Y. K. , Kim, J. S. , and Kim, J. K. , 2013, “ Phase Transformation of Cu Precipitates From BCC to FCC in Fe–3Si–2Cu Alloy,” Acta Mater., 61(2), pp. 519–528. [CrossRef]
Erhart, P. , Marian, J. , and Sadigh, B. , 2013, “ Thermodynamic and Mechanical Properties of Copper Precipitates in α-Iron From Atomistic Simulations,” Phys. Rev. B, 88(2), p. 024116. [CrossRef]


Grahic Jump Location
Fig. 1

(a) Schematic presentation of simulated crystallite and (b) periodic cell of MD simulation for the interaction of an edge dislocation and precipitate

Grahic Jump Location
Fig. 2

Dependences of stress–strain curves for 2 nm precipitates on temperature for (a) Cu precipitates, (b) Cu–Mn precipitates, and (c) the corresponding critical shear stress; the inset pictures are MD snapshots of the interaction between an edge dislocation and 2 nm Cu precipitate

Grahic Jump Location
Fig. 3

Dependences of stress–strain curves on sizes at 600 K: (a) Cu precipitates, (b) Cu–Mn precipitates, and (c) the corresponding critical shear stress, the inset pictures are the morphology of Cu and Cu–Mn precipitates after the dislocation detachment

Grahic Jump Location
Fig. 4

Critical shear stress of Cu and Cu–Mn precipitates versus temperature

Grahic Jump Location
Fig. 5

Critical shear stress of Cu and Cu–Mn precipitates versus (D−1+L−1)−1

Grahic Jump Location
Fig. 6

Critical line shape for an edge dislocation passing through precipitates: (a) Cu–Mn precipitates with different sizes and (b) Cu and Cu–Mn precipitates with diameter of 4 nm



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In