Glasses for Nuclear Waste Immobilization. Effect of Lutetium Addition on Yttrium Aluminosilicate Glass Crystallization Kinetics

[+] Author and Article Information
D. C. Lago

Departamento Materiales Nucleares,
Centro Atómico Bariloche,
Comisión Nacional de Energía Atómica,
Av. Bustillo 9500,
S. C. de Bariloche, Río Negro R8402AGP,
Instituto Balseiro (Universidad Nacional de Cuyo,
Comisión Nacional de Energía Atómica),
Av. Bustillo 9500,
S. C. de Bariloche, Río Negro R8402AGP,
e-mail: dlago@cab.cnea.gov.ar

M. B. Bortot

DiPaola Laboratory,
Department of Bioengineering,
University of Colorado - Anschutz Medical
Aurora, CO 80045
e-mail: maria.bortot@ucdenver.edu

M. O. Prado

Departamento Materiales Nucleares,
Centro Atómico Bariloche,
Comisión Nacional de Energía Atómica,
Av. Bustillo 9500,
S. C. de Bariloche, Río Negro R8402AGP,
Consejo Nacional de Investigaciones
Científicas y Técnicas,
Av. Rivadavia 1917,
Buenos Aires C1033AAJ, Argentina;
Instituto Balseiro (Universidad Nacional de Cuyo,
Comisión Nacional de Energía Atómica),
Av. Bustillo 9500,
S. C. de Bariloche, Río Negro R8402AGP,
e-mail: pradom@cab.cnea.gov.ar

Manuscript received June 29, 2018; final manuscript received December 21, 2018; published online March 15, 2019. Assoc. Editor: Ignacio Gómez.This work was prepared while under employment by the Government of Argentina as part of the official duties of the author(s) indicated above, as such copyright is owned by that Government, which reserves its own copyright under national law.

ASME J of Nuclear Rad Sci 5(2), 020907 (Mar 15, 2019) (6 pages) Paper No: NERS-18-1046; doi: 10.1115/1.4042497 History: Received June 29, 2018; Revised December 21, 2018

Glasses have emerged as alternative materials that can be used for long-term treatment and management of radioactive waste. Specifically, glasses can be used as a matrix to immobilize the radioactive material. Within the glass industry, silicate glasses are the most widely used due to their properties and to the large knowledge existent about them. Alkaline free silicate glasses are particularly corrosion resistant. Due to the latter, rare earth aluminosilicate glasses are good candidates for actinides immobilization, especially, yttrium aluminosilicate (YAS) glasses. The crystallization kinetics of YAS glasses on heating has been already studied, and this work is focused on the effect of lutetium addition on the YAS glass crystallization kinetics. The presence of a small amount of lutetium in a YAS glass decreases the surface density of nucleation sites (Ns) by about 1 order of magnitude and significantly decreases the crystal growth rate (U). In this work, it was observed that lutetium additions on the order of 0.2 (wt %) to a YAS glass dramatically decreased Ns, for example, at 1000 °C from 1011 to 109 nuclei/m2. Additionally, U for yttrium disilicate phase decreased from (8.21 ± 0.28) μm/h to (0.54 ± 0.04) μm/h at the same temperature.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Donald, I. W. , Metcalfe, B. L. , and Taylor, N. J. , 1997, “ Review. The Immobilization of High Level Radioactive Wastes Using Ceramic and Glasses,” J. Mater. Sci., 32(22), pp. 5851–5887. [CrossRef]
Ojovan, M. I. , and Lee, W. E. , 2011, “ Glassy Wasteforms for Nuclear Waste Immobilization,” Metall. Mater. Trans. A, 42, pp. 837–851. [CrossRef]
Ojovan, M. I. , and Lee, W. E. , 2005, An Introduction to Nuclear Waste Immobilization, 2nd ed., Elsevier Science Publisher, Amsterdam, The Netherlands.
Jantzen, C. M. , 1986, “ System Approach to Nuclear Waste Glass Development,” J. Non-Cryst. Solids, 84(1–3), pp. 215–225. [CrossRef]
Marchi, J. , Morais, D. , Shneider, J. , Bressiani, J. , and Bressiani, A. , 2005, “ Characterization of Rare Earth Aluminosilicate Glasses,” J. Non-Cryst. Solids, 351(10–11), pp. 863–868. [CrossRef]
Lemercier, H. , Rouxel, T. , Fargeot, D. , Besson, J. L. , and Piriou, B. , 1996, “ Yttrium SiAlON Glasses: Structure and Mechanical Properties—Elasticity and Viscosity,” J. Non-Cryst. Solids, 201(1–2), pp. 128–145. [CrossRef]
Clayden, N. J. , Esposito, S. , Aronne, A. , and Pernice, P. , 1999, “ Solid State 27Al NMR and FTIR Study of Lanthanum Aluminosilicate Glasses,” J. Non-Cryst. Solids, 258(1–3), pp. 11–19. [CrossRef]
Baghshahi, S. , Brungs, M. , Sorrell, C. , and Kim, H. , 2001, “ Surface Crystallization of Rare-Earth Aluminosilicate Glasses,” J. Non-Cryst. Solids, 290(2–3), pp. 208–215. [CrossRef]
Shelby, J. , and Kohli, J. , 1990, “ Rare-Earth Aluminosilicate Glasses,” J. Am. Ceram. Soc., 73(1), pp. 39–42. [CrossRef]
Babelot, C. , 2012, Monazite-Type Ceramics for Conditioning of Minor Actinides: Structural Characterization and Properties, Vol. 182, Energy & Environment, Jülich, Germany.
Galunin, E. , Alba, M. , and Vidal, M. , 2011, “ Stability of Rare-Earth Disilicates: Ionic Radius Effect,” J. Am. Ceram. Soc., 94(5), pp. 1568–1574. [CrossRef]
Alba, M. , and Chain, P. , 2007, “ Persistence of Lutetium Disilicate,” Appl. Geochem., 22(1), pp. 192–201. [CrossRef]
Arita, I. H. , Wilkinson, D. S. , and Purdy, G. R. , 1992, “ Crystallization of Yttria-Alumina-Silica Glasses,” J. Am. Ceram. Soc., 75(12), pp. 3315–3320. [CrossRef]
Hyatt, M. J. , and Day, D. E. , 1987, “ Glass Properties in the Yttria-Alumina-Silica System,” J. Am. Ceram. Soc., 70(10), pp. C-283–287. [CrossRef]
Sadiki, N. , Coutures, J. P. , Fillet, C. , and Dussossoy, J. L. , 2006, “ Crystallization of Lanthanum and Yttrium Aluminosilicate Glasses,” J. Nucl. Mater., 348(1–2), pp. 70–78. [CrossRef]
Lago, D. C. , and Prado, M. O. , 2013, “ Crystallization of Yttrium and Samarium Aluminosilicate Glasses,” Phys. Procedia, 48, pp. 10–16. [CrossRef]
Prado, M. , Lago, D. , and Rodríguez, D. , 2012, “ Sintering Kinetics of Yttrium Aluminosilicate Glasses,” MRS Online Proc., 1475, p. imrc11-1475-nw35-o49.
Lago, D. , Garcés, D. , and Prado, M. , 2012, “ Crystallization of Yttrium Aluminosilicate Glass for Nuclear Waste Immobilization,” MRS Online Proc., 1475, p. imrc11-1475-nw35-p13.
Alba, M. D. , and Chain, P. , 2005, “ Interaction Between Lu Cations and 2:1 Aluminosilicates Under Hydrothermal Treatment,” Clay Miner., 53(1), pp. 39–46.
Chapman, N. A. , and Smellie, J. A. T. , 1986, “ Introduction and Summary of Workshop,” Chem. Geol., 55(3–4), pp. 167–173. [CrossRef]
Leturcq, P. , Schmidt, D. , Madejová, J. , and Cicel, B. , 1999, “ Initial and Long-Term Dissolution Rates of Aluminosilicate Glasses Enriched With Ti, Zr and Nd,” Chem. Geol., 160(1–2), pp. 39–62. [CrossRef]
Ehrhardt, G. J. , and Day, D. E. , 1987, “ Therapeutic Use of 90Y Microspheres,” Int. J. Radiat. Appl. Instrum., Part B, 14(3), pp. 233–242. [CrossRef]
Prado, M. O. , Ferreira, E. B. , and Zanotto, E. D. , 2006, “ Sintering Kinetics of Crystallizing Glass Particles. A Review,” Melt Chemistry, Relaxation, and Solidification Kinetics of Glasses, Vol. 170, Wiley, Hoboken, NJ, pp. 163–179.
Raymond, K. , and Szigethy, G. , 2008, “ On the Suitability of Lanthanides as Actinide Analogs,” MRS Online Proc., pp. 1–6.


Grahic Jump Location
Fig. 1

X-ray diffraction of the as-obtained YAS glass

Grahic Jump Location
Fig. 2

Neutron activation analysis results for the lutetium content of different pieces of the YAS-Lu glass

Grahic Jump Location
Fig. 3

Differential thermal analysis of YAS and YAS-Lu glass slabs

Grahic Jump Location
Fig. 4

X-ray diffraction of crystallized YAS glass after 24 h of heat treatment at 1000 °C, where δ is yttrium disilicate, μ is mullite, and σ is sillimanite

Grahic Jump Location
Fig. 5

X-ray diffraction of crystallized YAS-Lu glass after 24 h of heat treatment at 1000 °C, where δ is yttrium disilicate, M is mullite, and Λ is lutetium disilicate

Grahic Jump Location
Fig. 6

Scanning electron microscope micrographs of surface crystals on YAS (upper row) and YAS-Lu glasses (lower row). Heat treatments of 1 h at 1000, 1020, and 1040 °C (columns). Micrograph bars (bottom): 10 μm and 20 μm for 1040 °C heat treatments.

Grahic Jump Location
Fig. 7

Yttrium aluminosilicate and YAS-Lu Ns values at different temperatures and times of heat treatments

Grahic Jump Location
Fig. 8

Crystal's radius values as a function of time at different temperatures for YAS and YAS-Lu glass surfaces (lines are guide to the eyes)

Grahic Jump Location
Fig. 9

Dependence of U with temperature. Lines are guide to the eyes.

Grahic Jump Location
Fig. 10

Optical microscopy micrograph of volume crystals in YAS-Lu glass after 10 h heat treatment at 1040 °C. (a) Prismatic crystal, (b) volume and surface crystals, and (c) quasi-prismatic crystal.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In