Abstract

Safe trajectory planning for high-performance automated vehicles in an environment with both static and moving obstacles is a challenging problem. Part of the challenge is developing a formulation that can be solved in real-time while including the following set of specifications: minimum time-to-goal, a dynamic vehicle model, minimum control effort, both static and moving obstacle avoidance, simultaneous optimization of speed and steering, and a short execution horizon. This paper presents a nonlinear model predictive control-based trajectory planning formulation, tailored for a large, high-speed unmanned ground vehicle, that includes the above set of specifications. The ability to solve this formulation in real-time is evaluated using NLOptControl, an open-source, direct-collocation-based optimal control problem solver in conjunction with the KNITRO nonlinear programming problem solver. The formulation is tested with various sets of specifications. A parametric study relating execution horizon and obstacle speed indicates that the moving obstacle avoidance specification is not needed for safety when the planner has a small execution horizon and the obstacles are moving slowly. However, a moving obstacle avoidance specification is needed when the obstacles are moving faster, and this specification improves the overall safety without, in most cases, increasing the solve-times. The results indicate that (i) safe trajectory planners for high-performance automated vehicles should include the entire set of specifications mentioned above, unless a static or low-speed environment permits a less comprehensive planner and (ii) the resulting formulation can be solved in real-time.

References

1.
Frasch
,
J. V.
,
Gray
,
A.
,
Zanon
,
M.
,
Ferreau
,
H. J.
,
Sager
,
S.
,
Borrelli
,
F.
, and
Diehl
,
M.
,
2013
, “
An Auto-Generated Nonlinear MPC Algorithm for Real-Time Obstacle Avoidance of Ground Vehicles
,”
European Control Conference
,
Zurich, Switzerland
,
July 17–19
, IEEE, pp.
4136
4141
.
2.
Frazzoli
,
E.
,
Dahleh
,
M. A.
, and
Feron
,
E.
,
2002
, “
Real-Time Motion Planning for Agile Autonomous Vehicles
,”
J. Guidance Control Dyn.
,
25
(
1
), pp.
116
129
.
3.
Lo
,
M. C.
,
Giffin
,
R. P.
,
Pakulski
,
K. A.
,
Davis
,
W. S.
,
Bernstein
,
S. A.
, and
Wise
,
D. V.
,
2017
, “
High-Mobility Multipurpose Wheeled Vehicle Rollover Accidents and Injuries to US Army Soldiers by Reported Occupant Restraint Use, 1992–2013
,”
Military Med.
,
182
(
5–6
), pp.
e1782
e1791
.
4.
Greatwood
,
C. M.
, and
Richards
,
A. G.
,
2013
, “
Implementation of Fast MPC With a Quadrotor for Obstacle Avoidance
,”
AIAA Guidance, Navigation, and Control Conference
,
Boston, MA
,
Aug. 19–22
, p.
4790
.
5.
Yoon
,
Y.
,
Shin
,
J.
,
Kim
,
H. J.
,
Park
,
Y.
, and
Sastry
,
S.
,
2009
, “
Model-Predictive Active Steering and Obstacle Avoidance for Autonomous Ground Vehicles
,”
Control Eng. Pract.
,
17
(
7
), pp.
741
750
.
6.
Kritayakirana
,
K.
, and
Gerdes
,
J. C.
,
2012
, “
Using the Centre of Percussion to Design a Steering Controller for an Autonomous Race Car
,”
Veh. Syst. Dyn.
,
50
(
Suppl. 1
), pp.
33
51
.
7.
Velenis
,
E.
,
Tsiotras
,
P.
, and
Lu
,
J.
,
2007
, “
Aggressive Maneuvers on Loose Surfaces: Data Analysis and Input Parametrization
,”
Mediterranean Conference on Control and Automation
,
Athens, Greece
,
July 27–29
, IEEE, pp.
1
6
.
8.
Liu
,
J.
,
Jayakumar
,
P.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2016
, “
A Study on Model Fidelity for Model Predictive Control-Based Obstacle Avoidance in High-Speed Autonomous Ground Vehicles
,”
Veh. Syst. Dyn.
,
54
(
11
), pp.
1629
1650
.
9.
Liu
,
S.
,
Atanasov
,
N.
,
Mohta
,
K.
, and
Kumar
,
V.
,
2017
, “
Search-Based Motion Planning for Quadrotors Using Linear Quadratic Minimum Time Control
,”
International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
2872
2879
.
10.
Mohta
,
K.
,
Sun
,
K.
,
Liu
,
S.
,
Watterson
,
M.
,
Pfrommer
,
B.
,
Svacha
,
J.
,
Mulgaonkar
,
Y.
,
Taylor
,
C. J.
, and
Kumar
,
V.
,
2018
, “
Experiments in Fast, Autonomous, GPS-Denied Quadrotor Flight
,”
International Conference on Robotics and Automation
,
Brisbane, Australia
,
May 21–26
.
11.
Liu
,
S.
,
Mohta
,
K.
,
Atanasov
,
N.
, and
Kumar
,
V.
,
2018
, “
Search-Based Motion Planning for Aggressive Flight in SE(3)
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2439
2446
.
12.
Liu
,
J.
,
Jayakumar
,
P.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2017
, “
Combined Speed and Steering Control in High-Speed Autonomous Ground Vehicles for Obstacle Avoidance Using Model Predictive Control
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8746
8763
.
13.
Nishio
,
Y.
,
Nonaka
,
K.
, and
Sekiguchi
,
K.
,
2017
, “
Moving Obstacle Avoidance Control by Fuzzy Potential Method and Model Predictive Control
,”
Asian Control Conference
,
Gold Coast, Australia
,
Dec. 17–20
, IEEE, pp.
1298
1303
.
14.
Yao
,
P.
,
Wang
,
H.
, and
Su
,
Z.
,
2015
, “
Real-Time Path Planning of Unmanned Aerial Vehicle for Target Tracking and Obstacle Avoidance in Complex Dynamic Environment
,”
Aerosp. Sci. Technol.
,
47
, pp.
269
279
.
15.
Jewison
,
C.
,
Erwin
,
R. S.
, and
Saenz-Otero
,
A.
,
2015
, “
Model Predictive Control With Ellipsoid Obstacle Constraints for Spacecraft Rendezvous
,”
IFAC-PapersOnLine
,
48
(
9
), pp.
257
262
.
16.
Febbo
,
H.
,
Liu
,
J.
,
Jayakumar
,
P.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2017
, “
Moving Obstacle Avoidance for Large, High-Speed Autonomous Ground Vehicles
,”
American Control Conference
,
Seattle, WA
,
May 24–26
, pp.
5568
5573
.
17.
Geisert
,
M.
, and
Mansard
,
N.
,
2016
, “
Trajectory Generation for Quadrotor Based Systems Using Numerical Optimal Control
,”
International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–20
, IEEE, pp.
2958
2964
.
18.
Basset
,
G.
,
Xu
,
Y.
, and
Yakimenko
,
O.
,
2010
, “
Computing Short-Time Aircraft Maneuvers Using Direct Methods
,”
J. Comput. Syst. Sci. Int.
,
49
(
3
), pp.
481
513
.
19.
Ghannadi
,
B.
,
Mehrabi
,
N.
,
Razavian
,
R. S.
, and
McPhee
,
J.
,
2017
, “
Nonlinear Model Predictive Control of an Upper Extremity Rehabilitation Robot Using a Two-Dimensional Human–Robot Interaction Model
,”
International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
502
507
.
20.
Febbo
,
H.
,
Jayakumar
,
P.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2020
, “
NLOptControl: A Modeling Language for Solving Optimal Control Problems
,” preprint arXiv:2003.00142.
21.
Simon
,
L. L.
,
Nagy
,
Z. K.
, and
Hungerbuehler
,
K.
,
2009
, “Swelling Constrained Control of an Industrial Batch Reactor Using a Dedicated NMPC Environment: OptCon,”
Nonlinear Model Predictive Control
,
L.
Magni
,
D. M.
Raimondo
, and
F.
Allgöwer
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
531
539
.
22.
Pacejka
,
H.
,
2005
,
Tire and Vehicle Dynamics
,
Elsevier
,
Rotterdam
.
23.
Zhang
,
X.
,
Liniger
,
A.
, and
Borrelli
,
F.
,
2021
, “
Optimization-Based Collision Avoidance
,”
IEEE Transactions on Control Systems Technology
,
29
(
3
), pp.
972
983
.
24.
Scokaert
,
P. O.
, and
Rawlings
,
J. B.
,
1999
, “
Feasibility Issues in Linear Model Predictive Control
,”
AIChE J.
,
45
(
8
), pp.
1649
1659
.
25.
Kerrigan
,
E. C.
, and
Maciejowski
,
J. M.
,
2000
, “
Soft Constraints and Exact Penalty Functions in Model Predictive Control
,”
International Conference on Control
,
Cambridge, UK
,
Sept. 4–7
.
26.
Thrun
,
S.
,
Montemerlo
,
M.
,
Dahlkamp
,
H.
,
Stavens
,
D.
,
Aron
,
A.
,
Diebel
,
J.
,
Fong
,
P.
,
Gale
,
J.
,
Halpenny
,
M.
,
Hoffmann
,
G.
,
Lau
,
K.
,
Oakley
,
C.
,
Palatucci
,
M.
,
Pratt
,
V.
,
Stang
,
P.
,
Strohband
,
S.
,
Dupont
,
C.
,
Jendrossek
,
L.-E.
,
Koelen
,
C.
,
Markey
,
C.
,
Rummel
,
C.
,
van Niekerk
,
J.
,
Jensen
,
E.
,
Alessandrini
,
P.
,
Bradski
,
G.
,
Davies
,
B.
,
Ettinger
,
S.
,
Kaehler
,
A.
,
Nefian
,
A.
, and
Mahoney
,
P.
,
2006
, “
Stanley: The Robot that Won the DARPA Grand Challenge
,”
J. Field Rob.
,
23
(
9
), pp.
661
692
.
27.
Dahlkamp
,
H.
,
Kaehler
,
A.
,
Stavens
,
D.
,
Thrun
,
S.
, and
Bradski
,
G. R.
,
2006
, “
Self-Supervised Monocular Road Detection in Desert Terrain
,”
Robotics: Science and Systems
,
Philadelphia, PA
,
Aug. 16–19
.
28.
Krüsi
,
P.
,
Furgale
,
P.
,
Bosse
,
M.
, and
Siegwart
,
R.
,
2017
, “
Driving on Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assessment in Generic Nonplanar Environments
,”
J. Field Rob.
,
34
(
5
), pp.
940
984
.
29.
Katrakazas
,
C.
,
Quddus
,
M.
,
Chen
,
W.-H.
, and
Deka
,
L.
,
2015
, “
Real-Time Motion Planning Methods for Autonomous On-Road Driving: State-of-the-Art and Future Research Directions
,”
Transp. Res. Part C: Emerg. Technol.
,
60
, pp.
416
442
.
30.
Paden
,
B.
,
Čáp
,
M.
,
Yong
,
S. Z.
,
Yershov
,
D.
, and
Frazzoli
,
E.
,
2016
, “
A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles
,”
IEEE Trans. Intell. Veh.
,
1
(
1
), pp.
33
55
.
31.
Chiang
,
H.-T. L.
,
HomChaudhuri
,
B.
,
Smith
,
L.
, and
Tapia
,
L.
,
2020
, “Safety, Challenges, and Performance of Motion Planners in Dynamic Environments,”
Robotics Research
, Vol.
10
,
N.
Amato
,
G.
Hager
,
S.
Thomas
,
M.
Torres-Torriti
, eds.,
Springer
,
Cham
, pp.
793
808
.
32.
MacAdam
,
C. C.
,
1988
, ‘
Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis
,” Tech. Rep. UMTRI-86-41,
University of Michigan Transportation Research Institute
,
Ann Arbor, MI
.
33.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, Vol.
19
.
SIAM
.
34.
Kelly
,
M.
,
2017
, “
An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation
,”
SIAM Rev.
,
59
(
4
), pp.
849
904
.
You do not currently have access to this content.