Abstract

This article focuses on the development of distributed robust model predictive control (MPC) methods for multiple connected and automated vehicles (CAVs) to ensure their safe operation in the presence of uncertainty. The proposed layered control framework includes reference trajectory generation, distributionally robust obstacle occupancy set computation, distributed state constraint set evaluation, data-driven linear model representation, and robust tube-based MPC design. To enable distributed operation among the CAVs, we present a method, which exploits sampling-based reference trajectory generation and distributed constraint set evaluation methods, that decouples the coupled collision avoidance constraint among the CAVs. This is followed by data-driven linear model representation of the nonlinear system to evaluate the convex equivalent of the nonlinear control problem. Finally, to ensure safe operation in the presence of uncertainty, this article employs a robust tube-based MPC method. For a multiple CAV lane change problem, simulation results show the efficacy of the proposed controller in terms of computational efficiency and the ability to generate safe and smooth CAV trajectories in a distributed fashion.

References

1.
Najm
,
W. G.
,
Koopmann
,
J.
,
Smith
,
J. D.
, and
Brewer
,
J.
,
2010
, “
Frequency of Target Crashes for Intellidrive Safety Systems
,”
National Highway Traffic Safety Administration, WA
, Technical Report DOT HS 811 381.
3.
Guanetti
,
J.
,
Kim
,
Y.
, and
Borrelli
,
F.
,
2018
, “
Control of Connected and Automated Vehicles: State of the Art and Future Challenges
,”
Annu. Rev. Control
,
45
, pp.
18
40
.
4.
Bageshwar
,
V. L.
,
Garrard
,
W. L.
, and
Rajamani
,
R.
,
2004
, “
Model Predictive Control of Transitional Maneuvers for Adaptive Cruise Control Vehicles
,”
IEEE Trans. Vehicular Technol.
,
53
(
5
), pp.
1573
1585
.
5.
Anderson
,
S. J.
,
Peters
,
S. C.
,
Pilutti
,
T. E.
, and
Iagnemma
,
K.
,
2010
, “
An Optimal-Control-Based Framework for Trajectory Planning, Threat Assessment, and Semi-Autonomous Control of Passenger Vehicles in Hazard Avoidance Scenarios
,”
Int. J. Vehicle Auton. Syst.
,
8
(
2
), pp.
190
216
.
6.
Bevan
,
G. P.
,
Gollee
,
H.
, and
O’reilly
,
J.
,
2010
, “
Trajectory Generation for Road Vehicle Obstacle Avoidance Using Convex Optimization
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
224
(
4
), pp.
455
473
.
7.
Gray
,
A.
,
Gao
,
Y.
,
Lin
,
T.
,
Hedrick
,
J. K.
,
Tseng
,
H. E.
, and
Borrelli
,
F.
,
2012
, “
Predictive Control for Agile Semi-Autonomous Ground Vehicles Using Motion Primitives
,”
American Control Conference
,
Montreal, Canada
,
June 27–29
, pp.
4239
4244
.
8.
Liu
,
K.
,
Gong
,
J.
,
Kurt
,
A.
,
Chen
,
H.
, and
Ozguner
,
U.
,
2018
, “
Dynamic Modeling and Control of High-Speed Automated Vehicles for Lane Change Maneuver
,”
IEEE Trans. Intell. Vehicles
,
3
(
3
), pp.
329
339
.
9.
Nilsson
,
J.
,
Brännström
,
M.
,
Coelingh
,
E.
, and
Fredriksson
,
J.
,
2016
, “
Lane Change Maneuvers for Automated Vehicles
,”
IEEE Trans. Intell. Transpor. Syst.
,
18
(
5
), pp.
1087
1096
.
10.
Nilsson
,
J.
,
Brännström
,
M.
,
Fredriksson
,
J.
, and
Coelingh
,
E.
,
2016
, “
Longitudinal and Lateral Control for Automated Yielding Maneuvers
,”
IEEE Trans. Intell. Transpor. Syst.
,
17
(
5
), pp.
1404
1414
.
11.
Butakov
,
V. A.
, and
Ioannou
,
P.
,
2014
, “
Personalized Driver/Vehicle Lane Change Models for Adas
,”
IEEE Trans. Vehicular Technol.
,
64
(
10
), pp.
4422
4431
.
12.
Nie
,
J.
,
Zhang
,
J.
,
Ding
,
W.
,
Wan
,
X.
,
Chen
,
X.
, and
Ran
,
B.
,
2016
, “
Decentralized Cooperative Lane-Changing Decision-Making for Connected Autonomous Vehicles
,”
IEEE Access
,
4
, pp.
9413
9420
.
13.
Awal
,
T.
,
Murshed
,
M.
, and
Ali
,
M.
,
2015
, “
An Efficient Cooperative Lane-Changing Algorithm for Sensor- and Communication-Enabled Automated Vehicles
,”
Intelligent Vehicles Symposium
,
Seoul, South Korea
,
June 28–July 1
, pp.
1328
1333
.
14.
Lombard
,
A.
,
Perronnet
,
F.
,
Abbas-Turki
,
A.
, and
El Moudni
,
A.
,
2017
, “
On the Cooperative Automatic Lane Change: Speed Synchronization and Automatic ‘courtesy’
,”
Design, Automation & Test in Europe Conference & Exhibition
,
Lausanne, Switzerland
,
Mar. 27–31
, pp.
1655
1658
.
15.
Sun
,
K.
,
Zhao
,
X.
, and
Wu
,
X.
,
2021
, “
A Cooperative Lane Change Model for Connected and Autonomous Vehicles on Two Lanes Highway by Considering the Traffic Efficiency on Both Lanes
,”
Transpor. Res. Interdiscip. Perspect.
,
9
, p.
100310
.
16.
Karimi
,
S.
, and
Vahidi
,
A.
,
2020
, “
Receding Horizon Motion Planning for Automated Lane Change and Merge Using Monte Carlo Tree Search and Level-K Game Theory
,”
Proceedings of American Control Conference
,
Denver, CO
,
July 1–3
, pp.
1223
1228
.
17.
Shao
,
K.
,
Zheng
,
J.
,
Deng
,
B.
,
Huang
,
K.
, and
Zhao
,
H.
,
2020
, “
Active Steering Control for Vehicle Rollover Risk Reduction Based on Slip Angle Estimation
,”
IET Cyber-Syst. Rob.
,
2
(
3
), pp.
132
139
.
18.
Zhou
,
D.
,
Wang
,
Z.
,
Bandyopadhyay
,
S.
, and
Schwager
,
M.
,
2017
, “
Fast, On-line Collision Avoidance for Dynamic Vehicles Using Buffered Voronoi Cells
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
1047
1054
.
19.
Wang
,
M.
,
Wang
,
Z.
,
Paudel
,
S.
, and
Schwager
,
M.
,
2018
, “
Safe Distributed Lane Change Maneuvers for Multiple Autonomous Vehicles Using Buffered Input Cells
,”
IEEE International Conference on Robotics and Automation
,
Brisbane, Australia
,
May 21–25
, pp.
1
7
.
20.
Wang
,
M.
, and
Schwager
,
M.
,
2019
, “
Distributed Collision Avoidance of Multiple Robots With Probabilistic Buffered Voronoi Cells
,”
International Symposium on Multi-Robot and Multi-Agent Systems
,
New Brunswick, NJ
,
Aug. 22–23
, pp.
169
175
.
21.
Schmerling
,
E.
,
Leung
,
K.
,
Vollprecht
,
W.
, and
Pavone
,
M.
,
2018
, “
Multimodal Probabilistic Model-Based Planning for Human-Robot Interaction
,”
2018 IEEE International Conference on Robotics and Automation
,
Brisbane, Australia
,
May 21–25
IEEE
, pp.
1
9
.
22.
Spica
,
R.
,
Cristofalo
,
E.
,
Wang
,
Z.
,
Montijano
,
E.
, and
Schwager
,
M.
,
2020
, “
A Real-Time Game Theoretic Planner for Autonomous Two-Player Drone Racing
,”
IEEE Trans. Robot.
,
36
, pp.
1389
1403
.
23.
Wu
,
A.
, and
How
,
J. P.
,
2012
, “
Guaranteed Infinite Horizon Avoidance of Unpredictable, Dynamically Constrained Obstacles
,”
Auton. Rob.
,
32
(
3
), pp.
227
242
.
24.
Chiang
,
H. T. L.
,
HomChaudhuri
,
B.
,
Vinod
,
A.
,
Oishi
,
M.
, and
Tapia
,
L.
,
2017
, “
Dynamic Risk Tolerance: Motion Planning by Balancing Short-Term and Long-Term Stochastic Dynamic Predictions
,”
International Conference on Robotics and Automation
,
Marina Bay Sands, Singapore
,
May 29–June 3
, pp.
3762
3769
.
25.
Pereira
,
A.
, and
Althoff
,
M.
,
2017
, “
Overapproximative Human Arm Occupancy Prediction for Collision Avoidance
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
2
), pp.
818
831
.
26.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
27.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2014
, “
Dynamic Mode Decomposition With Control
,”
SIAM J. Appl. Dyn. Sys.
,
15
(
1
), pp.
142
161
.
28.
Folkestad
,
C.
,
Pastor
,
D.
,
Mezic
,
I.
,
Mohr
,
R.
,
Fonoberova
,
M.
, and
Burdick
,
J.
,
2020
, “
Extended Dynamic Mode Decomposition With Learned Koopman Eigenfunctions for Prediction and Control
,”
American Control Conference
,
Denver, CO
,
July 1–3
, pp.
3906
3913
.
29.
Dai
,
L.
,
Xia
,
Y.
,
Gao
,
Y.
, and
Cannon
,
M.
,
2016
, “
Distributed Stochastic MPC of Linear Systems With Additive Uncertainty and Coupled Probabilistic Constraints
,”
IEEE. Trans. Automat. Contr.
,
62
(
7
), pp.
3474
3481
.
30.
Sotoudeh
,
S. M.
, and
HomChaudhuri
,
B.
,
2019
, “
Ensured Collision Avoidance Over a Finite Time Horizon for Autonomous Vehicles in Presence of Uncertainty
,”
Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8–11
, Vol.
59148
,
American Society of Mechanical Engineers
, p.
V001T01A003
.
31.
HomChaudhuri
,
B.
,
2019
, “
Distributionally Robust Stochastic Model Predictive Control for Collision Avoidance
,”
Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8–11
,
American Society of Mechanical Engineers
, pp.
1
8
.
32.
Kong
,
J.
,
Pfeiffer
,
M.
,
Schildbach
,
G.
, and
Borrelli
,
F.
,
2015
, “
Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design
,”
Intelligent Vehicles Symposium
,
Seoul, South Korea
,
June 28–July 1
, pp.
1094
1099
.
33.
Gipps
,
P.
,
1981
, “
A Behavioural Car-Following Model for Computer Simulation
,”
Transp. Res. Part B Methodol.
,
15
(
2
), pp.
105
111
.
34.
Deo
,
N.
, and
Trivedi
,
M. M.
,
2018
, “
Multi-Modal Trajectory Prediction of Surrounding Vehicles With Maneuver Based LSTMS
,”
Intelligent Vehicles Symposium
,
Changshu, China
,
June 26–30
, pp.
1179
1184
.
35.
Aswani
,
A.
,
Gonzalez
,
H.
,
Sastry
,
S. S.
, and
Tomlin
,
C.
,
2013
, “
Provably Safe and Robust Learning-Based Model Predictive Control
,”
Automatica
,
49
(
5
), pp.
1216
1226
.
36.
Delage
,
E.
, and
Ye
,
Y.
,
2010
, “
Distributionally Robust Optimization Under Moment Uncertainty With Application to Data-Driven Problems
,”
Oper. Res.
,
58
(
3
), pp.
595
612
.
37.
Zymler
,
S.
,
Kuhn
,
D.
, and
Rustem
,
B.
,
2013
, “
Distributionally Robust Joint Chance Constraints With Second-Order Moment Information
,”
Math. Programm.
,
137
(
1–2
), pp.
167
198
.
38.
Paden
,
B.
,
Čáp
,
M.
,
Yong
,
S. Z.
,
Yershov
,
D.
, and
Frazzoli
,
E.
,
2016
, “
A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles
,”
IEEE Trans. Intell. Vehicles
,
1
(
1
), pp.
33
55
.
39.
Pimenta
,
L. C.
,
Kumar
,
V.
,
Mesquita
,
R. C.
, and
Pereira
,
G. A.
,
2008
, “
Sensing and Coverage for a Network of Heterogeneous Robots
,”
IEEE Conference on Decision and Control
,
Cancun, Mexico
,
Dec. 9–11
, pp.
3947
3952
.
40.
Mao
,
Y.
,
Szmuk
,
M.
, and
Açıkmeşe
,
B.
,
2016
, “
Successive Convexification of Non-Convex Optimal Control Problems and its Convergence Properties
,”
IEEE Conference on Decision and Control
,
Las Vegas, NV
,
Dec. 12–14
, pp.
3636
3641
.
41.
Limon
,
D.
,
Alvarado
,
I.
,
Alamo
,
T.
, and
Camacho
,
E.
,
2010
, “
Robust Tube-Based MPC for Tracking of Constrained Linear Systems With Additive Disturbances
,”
J. Process. Control.
,
20
(
3
), pp.
248
260
.
42.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
43.
Wang
,
Y.
, and
Boyd
,
S.
,
2009
, “
Fast Model Predictive Control Using Online Optimization
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
267
278
.
44.
HomChaudhuri
,
B.
,
Vahidi
,
A.
, and
Pisu
,
P.
,
2017
, “
Fast Model Predictive Control-Based Fuel Efficient Control Strategy for a Group of Connected Vehicles in Urban Road Conditions
,”
IEEE Trans. Control Syst. Technol.
,
25
(
2
), pp.
760
767
.
45.
Dosovitskiy
,
A.
,
Ros
,
G.
,
Codevilla
,
F.
,
Lopez
,
A.
, and
Koltun
,
V.
,
2017
, “
CARLA: An Open Urban Driving Simulator
,”
Proceedings of the 1st Annual Conference on Robot Learning
,
Mountain View, CA
,
Nov. 13–15
, pp.
1
16
.
You do not currently have access to this content.