We propose a mechanical model for tendon or ligament stress–stretch behavior that includes both microstructural and tissue level aspects of the structural hierarchy in its formulation. At the microstructural scale, a constitutive law for collagen fibers is derived based on a strain-energy formulation. The three-dimensional orientation and deformation of the collagen fibrils that aggregate to form fibers are taken into consideration. Fibril orientation is represented by a probability distribution function that is axisymmetric with respect to the fiber. Fiber deformation is assumed to be incompressible and axisymmetric. The matrix is assumed to contribute to stress only through a constant hydrostatic pressure term. At the tissue level, an average stress versus stretch relation is computed by assuming a statistical distribution for fiber straightening during tissue loading. Fiber straightening stretch is assumed to be distributed according to a Weibull probability distribution function. The resulting comprehensive stress–stretch law includes seven parameters, which represent structural and microstructural organization, fibril elasticity, as well as a failure criterion. The failure criterion is stretch based. It is applied at the fibril level for disorganized tissues but can be applied more simply at a fiber level for well-organized tissues with effectively parallel fibrils. The influence of these seven parameters on tissue stress–stretch response is discussed and a simplified form of the model is shown to characterize the nonlinear experimentally determined response of healing medial collateral ligaments. In addition, microstructural fibril organizational data (Frank et al., 1991, 1992) are used to demonstrate how fibril organization affects material stiffness according to the formulation. A simplified form, assuming a linearly elastic fiber stress versus stretch relationship, is shown to be useful for quantifying experimentally determined nonlinear toe-in and failure behavior of tendons and ligaments. We believe this ligament and tendon stress–stretch law can be useful in the elucidation of the complex relationships between collagen structure, fibril elasticity, and mechanical response.

1.
Abrahamson
M.
, “
Mechanical behaviour of tendon in vitro: a preliminary report
,”
Med. Biol. Engng.
, Vol.
5
,
1967
, pp.
433
443
.
2.
Ault
H. K.
, and
Hoffman
A. H.
, “
A composite micromechanical model for connective tissues: Part I-Theory
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
,
1992
a, pp.
137
146
.
3.
Ault
H. K.
, and
Hoffman
A. H.
, “
A composite micromechanical model for connective tissues: Part II—Application to rat tail tendon and joint capsule
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
,
1992
b, pp.
142
146
.
4.
Belkoff
S. M.
,
Haut
R. C.
, “
A structural model used to evaluate the changing microstructure of maturing rat skin
,”
J. Biomech.
, Vol.
24
(
8
),
1991
, pp.
711
720
.
5.
Belkoff
S. M.
, and
Haut
R. C.
, “
Microstructurally based model analysis of γ-irradiated tendon allografts
,”
J. Orthop. Res.
, Vol.
10
(
3
),
1992
, pp.
461
464
.
6.
Bigi
A.
,
Ripamonti
A.
,
Roveri
N.
,
Jeronimidis
G.
, and
Purslow
P. P.
, “
Collagen orientation by x-ray pole figures and mechanical properties of media carotid wall
,”
J. Mat. Sci.
, Vol.
16
,
1981
, pp.
2557
2562
.
7.
Broom
N. D.
, “
Simultaneous morphological and stress–strain studies of the fibrous components in wet heart valve leaflet tissue
,”
Connect Tissue Res.
, Vol.
6
,
1978
, pp.
37
50
.
8.
Butler
D. L.
,
Guan
Y.
,
Kay
M. D.
,
Cummings
J. F.
,
Feder
S. M.
, and
Levy
M. S.
, “
Location-dependent variations in the material properties of the anterior cruciate ligament
,”
J. Biomech.
, Vol.
25
(
5
),
1992
, pp.
511
518
.
9.
Chen, C., McCabe, R. P., Vanderby, R., Jr., “Two electrokinetic phenomena in rabbit patellar tendon: pressure and voltage,” Proc. 1995 Bioengineering Conference, ASME BED-Vol. 29, 1995, p. 31.
10.
Comninou
M.
, and
Yannas
I. V.
, “
Dependence of stress–strain nonlinearity of connective tissues on the geometry of collagen fibers
,”
Biomech.
, Vol.
9
,
1976
, pp.
427
433
.
11.
Diamant
J.
,
Keller
A.
,
Baer
E.
,
Litt
M.
, and
Arridge
R. G. C.
, “
Collagen: ultrastructure and its relation to mechanical properties
,”
Proc. Royal Soc. Lond.
, Vol.
180B
,
1972
, pp.
293
315
.
12.
Fisher, N. I., Lerwis, T. L., and Embleton, B. J. J., Statistical analysis of spherical data, Cambridge University Press, 1987.
13.
Frank
C.
,
MacFarlane
B.
,
Edwards
P.
,
Rangayyan
R.
,
Liu
Z.-Q.
,
Walsh
S.
, and
Bray
R.
, “
A quantitative analysis of matrix alignment in ligament scars: a comparison of movement versus immobilization in an immature rabbit model
,”
J. Orthop. Res.
, Vol.
9
,
1991
, pp.
219
227
.
14.
Frank
C.
,
McDonald
D.
,
Bray
D.
,
Bray
R.
,
Rangazyan
R.
,
Chimich
D.
, and
Shrive
N.
, “
Collagen fibril diameters in the healing adult rabbit medial collateral ligament
,”
Connect. Tissue. Res.
, Vol.
27
,
1992
, pp.
251
263
.
15.
Green, A. E., and Zerna, W., Theoretical Elasticity, Oxford University Press, 1968.
16.
Hines, W. W., and Montgomery, D. C, Probability and statistics in engineering and management science, Wiley, New York, 1980.
17.
Kastelic
J.
,
Galeski
A.
, and
Baer
E.
, “
The multicomposite structure of tendon
,”
Conn. Tissue. Res.
, Vol.
6
,
1978
, pp.
11
23
.
18.
Kastelic
J.
,
Palley
I.
, and
Baer
E.
, “
A structural mechanical model for tendon crimping
,”
J. Biomech.
, Vol.
13
,
1980
, pp.
887
893
.
19.
Kastelic
J.
, and
Baer
E.
, “
Deformation in Tendon and Collagen
,”
Symp. Soc. Exp. Biol.
, Vol.
34
,
1980
, pp.
397
435
.
20.
Kato
Y. P.
,
Christiansen
D. L.
,
Hahn
R. A.
,
Shieh
S.-J.
,
Goldstein
J. D.
, and
Silver
F. H.
, “
Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres
,”
Biomaterials
, Vol.
10
,
1989
, pp.
38
42
.
21.
Kirby
M. C.
,
Aspden
R. M.
, and
Hukins
D. W.
, “
Determination of the orientation distribution function for collagen fibrils in a connective tissue site from high-angle x-ray diffraction pattern
,”
Appl. Cryst.
, Vol.
21
,
1988
, pp.
929
934
.
22.
Kwan
M. K.
, and
Woo
S. L.-Y.
, “
A structural model to describe the nonlinear stress–strain behavior for parallel-fibered collagenous tissues
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
,
1989
, pp.
361
363
.
23.
Kwan
M. K.
, and
Woo
S. L.-Y.
, “
A structural model to describe the nonlinear stress–strain behavior for parallel-fibered collagenous tissues
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
111
,
1989
, pp.
361
363
.
24.
Lam
T. C.
,
Shrive
N. G.
, and
Frank
C. B.
, “
Variations in rupture site and surface strains at failure in the maturing rabbit medial collateral ligament
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
117
,
1995
, pp.
455
461
.
25.
Lanir
Y.
, “
A structural theory for the homogeneous biaxial stress–strain relationships in flat collagenous tissues
,”
J. Biomech.
, Vol.
12
,
1979
, pp.
423
436
.
26.
Lanir
Y.
, “
Constitutive equations for fibrous connective tissues
,”
J. Biomech.
, Vol.
16
(
1
),
1983
, pp.
1
22
.
27.
Lanir
Y.
, “
Structure–strength relations in mammalian tendon
,”
Biophys. J.
, Vol.
24
,
1978
, pp.
541
554
.
28.
Liu
Z. Q.
,
Ranganyan
R. M.
, and
Frank
C. B.
, “
Statistical analysis of collagen alignment in ligaments by scale-space analysis
,”
IEEE Trans. Biomed. Engr.
, Vol.
38
(
6
),
1991
, pp.
580
588
.
29.
Loitz-Ramage, B., Frank, C., and Shrive, N., unpublished data on healing rabbit MCLs.
30.
Love, A. E. H., Theory of Elasticity, 4th ed., Dover Publications, arts. 262-265, 1944.
31.
Nestler
F. H. M.
,
Hvidt
S.
,
Ferry
J. D.
, “
Flexibility of collagen determined from dilute solution viscoelastic measurements
,”
Biopolymers
, Vol.
22
,
1983
, pp.
1747
1758
.
32.
Padgett
L. R.
, and
Dahners
L. E.
, “
Rigid immobilization alters matrix organization in the injured rat medial collateral ligament
,”
J. Orthop. Res.
, Vol.
10
,
1992
, pp.
895
900
.
33.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical recipes in C: The art of scientific computing, Cambridge University Press, Cambridge, 1990.
34.
Rigby
B. J.
,
Hirai
N.
,
Spikes
J. D.
,
Eyring
H.
, “
The mechanical properties of rat tail tendon
,”
Gen. Physiology
, Vol.
43
,
1959
, pp.
265
289
.
35.
Sacks
M. S.
,
Cheong
C. J.
, “
Characterization of collagen fiber architecture in canine diaphragmatic central tendon
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
114
,
1992
, pp.
183
190
.
36.
Sasaki
N.
, and
Odajima
S.
, “
Stress–strain curve and Young’s modulus of a collagen molecule as determined by the x-ray diffraction technique
,”
J. Biomech.
, Vol.
29
(
5
),
1996
, pp.
655
658
.
37.
Sasaki
N.
, and
Odajima
S.
, “
Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy
,”
J. Biomech.
, Vol.
29
(
9
),
1996
, pp.
1131
1136
.
38.
Shrive
N.
,
Chimich
D.
,
Marchuk
L.
,
Wilson
J.
,
Brant
R.
, and
Frank
C.
, “
Soft-tissue ‘flaws’ are associated with the material properties of the healing rabbit medial collateral ligament
,”
J. Orthop. Res.
, Vol.
13
,
1995
, pp.
923
929
.
39.
Stouffer
D. C.
,
Butler
D. L.
, and
Hosny
D.
, “
The relationship between crimp pattern and mechanical response of human patellar tendon-bone units
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
,
1985
, pp.
158
165
.
40.
Takai
S.
,
Woo
S. L.-Y.
,
Livesay
G. A.
,
Adams
D. J.
, and
Fu
F. H.
, “
Determination of in situ loads on the human anterior cruciate ligament
,”
J. Orthop. Res.
, Vol.
11
,
1993
, pp.
686
695
.
41.
Thielke, R. J., Vanderby, R., Jr., and Grood, E. S., “Volumetric changes in ligaments under tension,” Proc. 1995 Bioengineering Conference, ASME BED-Vol. 29, 1995, p. 197.
42.
Viidik
A.
, and
Elkholm
R.
, “
Light and electron microscopic studies of collagen fibers under strain
,”
Z. Anat. Entwickl. Gesch.
, Vol.
127
,
1968
, pp.
154
164
.
43.
Weibull
W.
, “
A statistical distribution function of wide applicability
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
18
(
3
),
1951
, pp.
293
297
.
44.
Woo
S. L.-Y.
,
Gomez
M. A.
,
Masahiro
I.
, and
Akeson
W. H.
, “
New experimental procedures to evaluate the biomechanical properties of healing canine medical collateral ligaments
,”
J. Orthop. Res.
, Vol.
5
,
1987
, pp.
425
432
.
45.
Woo
S. L.-Y.
,
Johnson
G. A.
, and
Smith
B. A.
, “
Mathematical Modeling of Ligaments and Tendons
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
,
1993
, pp.
468
473
.
46.
Yahia
L.-H.
, and
Drouin
G.
, “
Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture
,”
J. Orthop. Res.
, Vol.
7
(
2
),
1989
, pp.
243
251
.
This content is only available via PDF.
You do not currently have access to this content.