Based on the Theory of Porous Media (mixture theories extended by the concept of volume fractions), a model describing the mechanical behavior of hydrated soft tissues such as articular cartilage is presented. As usual, the tissue will be modeled as a materially incompressible binary medium of one linear viscoelastic porous solid skeleton saturated by a single viscous pore-fluid. The contribution of this paper is to combine a descriptive representation of the linear viscoelasticity law for the organic solid matrix with an efficient numerical treatment of the strongly coupled solid-fluid problem. Furthermore, deformation-dependent permeability effects are considered. Within the finite element method (FEM), the weak forms of the governing model equations are set up in a system of differential algebraic equations (DAE) in time. Thus, appropriate embedded error-controlled time integration methods can be applied that allow for a reliable and efficient numerical treatment of complex initial boundary-value problems. The applicability and the efficiency of the presented model are demonstrated within canonical, numerical examples, which reveal the influence of the intrinsic dissipation on the general behavior of hydrated soft tissues, exemplarily on articular cartilage.

1.
Bowen, R. M., 1976, “Theory of Mixtures,” in: Continuum Physics, Vol. III, Eringen, A. C., ed., Academic Press, New York, pp. 1–127.
2.
Bowen
,
R. M.
,
1980
, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
18
, pp.
1129
1148
.
3.
de Boer, R., and Ehlers, W., 1986, “Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme,” Forschungsberichte aus dem Fachbereich Bauwesen, Vol. 40, Universita¨t Essen, Essen.
4.
Ehlers, W., 1989, “Poro¨se Medien—ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie,” Forschungsberichte aus dem Fachbereich Bauwesen, Vol. 47, Universita¨t Essen, Essen.
5.
Ehlers, W., 1993, “Constitutive Equations for Granular Materials in Geomechanical Context,” in: Continuum Mechanics in Environmental Sciences, CISM Courses and Lectures, Vol. 337, Hutter, K., ed., Springer-Verlag, Wien, pp. 313–402.
6.
Ehlers
,
W.
,
1996
, “
Grundlegende Konzepte in der Theorie Poro¨ser Medien
,”
Technische Mechanik
,
16
, pp.
63
76
.
7.
Pre´vost
,
P.
,
1982
, “
Nonlinear Transient Phenomena in Saturated Porous Media
,”
Comput. Methods Appl. Mech. Eng.
,
30
, pp.
3
18
.
8.
Diebels
,
S.
, and
Ehlers
,
W.
,
1996
, “
Dynamic Analysis of a Fully Saturated Porous Medium Accounting for Geometrical and Material Non-linearities
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
81
97
.
9.
Ehlers
,
W.
, and
Markert
,
B.
,
2000
, “
On the Viscoelastic Behavior of Fluid-Saturated Porous Materials
,”
Granular Matter
,
2
,
No. 3
No. 3
.
10.
Ehlers, W., Diebels, S., Ellsiepen, P., and Volk, W., 1997, “Localization Phenomena in Liquid-Saturated Soils,” in: Proc. NAFEMS World Congress 1997, Stuttgart, pp. 287–298.
11.
Ehlers
,
W.
, and
Volk
,
W.
,
1998
, “
On Theoretical and Numerical Methods in the Theory of Porous Media Based on Polar and Non-polar Elasto-plastic Solid Materials
,”
Int. J. Solids Struct.
,
35
, pp.
4597
4617
.
12.
Diebels, S., Ellsiepen, P., and Ehlers, W., 1998, “A Two-Phase Model for Viscoplastic Geomaterials,” in: Dynamics of Continua, Besdo, D., and Bogacz, R., eds., Shaker-Verlag, Aachen, pp. 103–112.
13.
Bachrach
,
N. M.
,
Mow
,
V. C.
, and
Guilak
,
F.
,
1998
, “
Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures
,”
J. Biomech.
,
31
, pp.
445
451
.
14.
Hayes
,
W. C.
, and
Bodine
,
A. J.
,
1978
, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
,
11
, pp.
407
419
.
15.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
16.
Woo
,
S. L.-Y.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1980
, “
Quasi-linear Viscoelastic Properties of Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
,
102
, pp.
85
90
.
17.
Mow, V. C., Lai, W. M., and Holmes, M. H., 1982, “Advanced Theoretical and Experimental Techniques in Cartilage Research,” in: Biomechanics: Principles and Applications, Huiskes, R., Van Campen, D., and De Wijn, J., eds., Martinus Nijhoff Publishers, The Hague, pp. 47–74.
18.
Mow, V. C., and Ratcliff, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” in: Basic Orthopaedic Biomechanics, 2nd ed., Mow, V. C., and Hayes, W. C., eds., Lipincott-Raven Publishers, Philadelphia, pp. 113–177.
19.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
, pp.
123
130
.
20.
Mak
,
A. F.
,
1986
, “
Unconfined Compression of Hydrated Soft Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis
,”
Biorheology
,
23
, pp.
371
383
.
21.
Fung, Y. C., 1972, “Stress-Strain-History Relations of Soft Tissues in Simple Elongation,” in: Biomechanics: Its Foundations and Objectives, Fung, Y. C., Perrone, N., and Anliker, M., eds., Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.
22.
Suh
,
J.-K.
, and
Bai
,
S.
,
1998
, “
Finite Element Formulation of Biphasic Poroviscoelastic Model of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
, pp.
195
201
.
23.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
, pp.
597
613
.
24.
Le Tallec
,
P.
,
Rahier
,
C.
, and
Kaiss
,
A.
,
1993
, “
Three-Dimensional Incompressible Viscoelasticity in Large Strains: Formulation and Numerical Approximation
,”
Comput. Methods Appl. Mech. Eng.
,
109
, pp.
133
258
.
25.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
, pp.
3455
3482
.
26.
Spilker
,
R. L.
, and
Suh
,
J.-K.
,
1990
, “
Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Hydrated Soft Tissues
,”
Comput. Struct.
,
35
, pp.
425
439
.
27.
Diebels
,
S.
,
Ellsiepen
,
P.
, and
Ehlers
,
W.
,
1999
, “
Error-Controlled Runge–Kutta Time Integration of a Viscoplastic Hybrid Two-Phase Model
,”
Technische Mechanik
,
19
, pp.
19
27
.
28.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, New-York.
29.
Hairer, E., and Wanner, G., 1991, Solving Ordinary Differential Equations II—Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin.
30.
Hassanizadeh
,
S. M.
, and
Gray
,
W. G.
,
1979
, “
General Conservation Equations for Multi-Phase-Systems: 2. Mass, Momenta, Energy and Entropy Equations
,”
Adv. Water Resour.
,
2
, pp.
191
203
.
31.
de Boer, R., Ehlers, W., Kowalski, S., and Plischka, J., 1991, “Porous Media—A Survey of Different Approaches,” Forschungsberichte aus dem Fachbereich Bauwesen, Vol. 54, Universita¨t Essen, Essen.
32.
Eipper, G., 1998, “Theorie und Numerik finiter elastischer Deformationen in fluidgesa¨ttigten poro¨sen Festko¨rpern,” Dissertation, Bericht No. II-1 des Instituts fu¨r Mechanik (Bauwesen), Universita¨t Stuttgart, Stuttgart.
33.
Tschoegl, N. W., 1989, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, Springer-Verlag, New York.
34.
Ehlers
,
W.
, and
Ellsiepen
,
P.
,
1997
, “
Zeitschrittgesteuerte Verfahren bei stark gekoppelten Festko¨rper-Fluid-Problemen
,”
Z. Angew. Math. Mech.
,
77
, pp.
S81–S82
S81–S82
.
35.
Ellsiepen, P., 1999, “Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poro¨ser Medien,” Dissertation, Bericht Nr. II-3 des Instituts fu¨r Mechanik (Bauwesen), Universita¨t Stuttgart, Stuttgart.
36.
Hambly
,
E. C.
,
1969
, “
A New True Triaxial Apparatus
,”
Geotechnique
,
19
, pp.
307
309
.
37.
Lade
,
P. V.
, and
Duncan
,
J. M.
,
1973
, “
Cubical Triaxial Tests on Cohesionless Soils
,”
J. Geotech. Eng.
,
99
, pp.
793
812
.
38.
Zhu
,
W. B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1986
, “
Intrinsic Quasi-linear Viscoelastic Behavior of the Extracellular Matrix of Cartilage
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
11
, p.
407
407
.
39.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
, pp.
853
861
.
40.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
, pp.
581
592
.
41.
Suh
,
J.-K.
, and
DiSilvestro
,
M. R.
,
1999
, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
,
66
, pp.
528
535
.
You do not currently have access to this content.