The initial, rapid, flow independent, apparent stress relaxation of articular cartilage disks deformed by unconfined compressive displacement is shown to be consistent with the theory of polymer dynamics. A relaxation function for polymers based upon a mechanistic model of molecular interaction (reptation) appropriately approximated early, flow independent relaxation of stress. It is argued that the theory of polymer dynamics, with its reliance on mechanistic models of molecular interaction, is an appropriate technique for application to and the understanding of rapid, flow independent, stress relaxation in cartilage.

1.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic creep and stress relaxation of articular cartilage in compression—Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
2.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
, pp.
377
394
.
3.
Mak
,
A. F.
,
1986
, “
The apparent viscoelastic behavior of articular cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
J. Biomech. Eng.
,
108
, pp.
123
130
.
4.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
J. Biomech. Eng.
,
123
, pp.
191
197
.
5.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,”
J. Biomech. Eng.
,
123
, pp.
198
200
.
6.
Lai
,
W. M.
,
Hou
,
I. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
J. Biomech. Eng.
,
113
, pp.
245
258
.
7.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
J. Biomech. Eng.
,
123
, pp.
410
417
.
8.
Buckwalter
,
J. A.
,
1998
, “
Articular Cartilage: Injuries and Potential for Healing
,”
J. Orthop. Sports Phys. Ther.
,
28
, pp.
192
202
.
9.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
,
1998
, “
Articular Cartilage Repair and Transplantation
,”
Arthritis Rheum.
,
41
, pp.
1331
1342
.
10.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
,
1998
, “
Articular Cartilage: Degeneration and Osteoarthritis, Repair, Regeneration, and Transplantation
,”
Instr Course Lect
,
47
, pp.
487
504
.
11.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
,
1998
, “
Articular Cartilage: Tissue Design and Chondrocyte-Matrix Interactions
,”
Instr Course Lect
,
47
, pp.
477
486
.
12.
Harper
,
G. S.
,
Comper
,
W. D.
, and
Preston
,
B. N.
,
1984
, “
Dissipative Structures in Proteoglycan Solutions
,”
J. Biol. Chem.
,
259
, pp.
10582
10589
.
13.
Comper
,
W. D.
,
Williams
,
R. P.
, and
Zamparo
,
O.
,
1990
, “
Water Transport in Extracellular Matrices
,”
Connect. Tissue Res.
,
25
, pp.
89
102
.
14.
Buschmann
,
M. D.
, and
Grodzinsky
,
A. J.
,
1995
, “
A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,”
J. Biomech. Eng.
,
117
, pp.
179
192
.
15.
Garcia
,
A. M.
,
Frank
,
E. H.
,
Grimshaw
,
P. E.
, and
Grodzinsky
,
A. J.
,
1996
, “
Contributions of Fluid Convection and Electrical Migration to Transport in Cartilage: Relevance to Loading
,”
Arch. Biochem. Biophys.
,
333
, pp.
317
325
.
16.
Brown
,
T. D.
, and
Singerman
,
R. J.
,
1986
, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
,
19
, pp.
597
605
.
17.
DiSilvestro
,
M. R.
, and
Suh
,
J. K.
,
2001
, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
,
34
, pp.
519
525
.
18.
de Gennes, P. G., 1984, “Scaling Concepts in Polymer Physics,” Cornell University Press.
19.
de Gennes, P. G., 1990, Introduction to Polymer Dynamics, Cambridge University Press, Cambridge, MA.
20.
de Gennes, P. G. 1997, Soft Interfaces: The 1994 Dirac Memorial Lecture, Cambridge University Press, New York, NY.
21.
Doi, M., and Edwards, S. F., 1986, “The Theory of Polymer Dynamics,” Clarendon Press, Oxford.
22.
Edwards
,
S. F.
,
1992
, “
The Edwards Model
,”
International Journal of Modern Physics, B, Condensed Matter Physics, Statistical Physics, Applied Physics
,
6
, pp.
1563
1594
.
23.
Grosberg, A. I., Khokhlov, A. R., and Grosberg, A. I., 1994, The Statistical Physics of Macromolecules, Springer-Verlag, Heidelberg.
24.
Grosberg, A. Y., and Khokhlov, A. R., 1997, Giant Molecules, Academic Press, San Diego, CA.
25.
Neville, A. C., 1993, Biology of Fibrous Composites: Development Beyond the Cell Membrane, Cambridge University Press, Cambridge.
26.
Einstein, A., 1956, Investigations on the Theory of the Brownian Movement, Dover Publications, New York, NY.
27.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, John Wiley & Sons, Inc.
28.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1977, Dynamics of Polymeric Liquids, John Wiley & Sons, Inc.
29.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
934
.
30.
Cussler, E. L., 1997, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, New York, NY.
You do not currently have access to this content.