The initial, rapid, flow independent, apparent stress relaxation of articular cartilage disks deformed by unconfined compressive displacement is shown to be consistent with the theory of polymer dynamics. A relaxation function for polymers based upon a mechanistic model of molecular interaction (reptation) appropriately approximated early, flow independent relaxation of stress. It is argued that the theory of polymer dynamics, with its reliance on mechanistic models of molecular interaction, is an appropriate technique for application to and the understanding of rapid, flow independent, stress relaxation in cartilage.
Issue Section:
Bone/Orthopedic
1.
Mow
, V. C.
, Kuei
, S. C.
, Lai
, W. M.
, and Armstrong
, C. G.
, 1980
, “Biphasic creep and stress relaxation of articular cartilage in compression—Theory and Experiments
,” J. Biomech. Eng.
, 102
, pp. 73
–84
.2.
Mow
, V. C.
, Holmes
, M. H.
, and Lai
, W. M.
, 1984
, “Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,” J. Biomech.
, 17
, pp. 377
–394
.3.
Mak
, A. F.
, 1986
, “The apparent viscoelastic behavior of articular cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,” J. Biomech. Eng.
, 108
, pp. 123
–130
.4.
DiSilvestro
, M. R.
, Zhu
, Q.
, Wong
, M.
, Jurvelin
, J. S.
, and Suh
, J. K.
, 2001
, “Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement
,” J. Biomech. Eng.
, 123
, pp. 191
–197
.5.
DiSilvestro
, M. R.
, Zhu
, Q.
, and Suh
, J. K.
, 2001
, “Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,” J. Biomech. Eng.
, 123
, pp. 198
–200
.6.
Lai
, W. M.
, Hou
, I. S.
, and Mow
, V. C.
, 1991
, “A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,” J. Biomech. Eng.
, 113
, pp. 245
–258
.7.
Huang
, C. Y.
, Mow
, V. C.
, and Ateshian
, G. A.
, 2001
, “The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,” J. Biomech. Eng.
, 123
, pp. 410
–417
.8.
Buckwalter
, J. A.
, 1998
, “Articular Cartilage: Injuries and Potential for Healing
,” J. Orthop. Sports Phys. Ther.
, 28
, pp. 192
–202
.9.
Buckwalter
, J. A.
, and Mankin
, H. J.
, 1998
, “Articular Cartilage Repair and Transplantation
,” Arthritis Rheum.
, 41
, pp. 1331
–1342
.10.
Buckwalter
, J. A.
, and Mankin
, H. J.
, 1998
, “Articular Cartilage: Degeneration and Osteoarthritis, Repair, Regeneration, and Transplantation
,” Instr Course Lect
, 47
, pp. 487
–504
.11.
Buckwalter
, J. A.
, and Mankin
, H. J.
, 1998
, “Articular Cartilage: Tissue Design and Chondrocyte-Matrix Interactions
,” Instr Course Lect
, 47
, pp. 477
–486
.12.
Harper
, G. S.
, Comper
, W. D.
, and Preston
, B. N.
, 1984
, “Dissipative Structures in Proteoglycan Solutions
,” J. Biol. Chem.
, 259
, pp. 10582
–10589
.13.
Comper
, W. D.
, Williams
, R. P.
, and Zamparo
, O.
, 1990
, “Water Transport in Extracellular Matrices
,” Connect. Tissue Res.
, 25
, pp. 89
–102
.14.
Buschmann
, M. D.
, and Grodzinsky
, A. J.
, 1995
, “A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,” J. Biomech. Eng.
, 117
, pp. 179
–192
.15.
Garcia
, A. M.
, Frank
, E. H.
, Grimshaw
, P. E.
, and Grodzinsky
, A. J.
, 1996
, “Contributions of Fluid Convection and Electrical Migration to Transport in Cartilage: Relevance to Loading
,” Arch. Biochem. Biophys.
, 333
, pp. 317
–325
.16.
Brown
, T. D.
, and Singerman
, R. J.
, 1986
, “Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,” J. Biomech.
, 19
, pp. 597
–605
.17.
DiSilvestro
, M. R.
, and Suh
, J. K.
, 2001
, “A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,” J. Biomech.
, 34
, pp. 519
–525
.18.
de Gennes, P. G., 1984, “Scaling Concepts in Polymer Physics,” Cornell University Press.
19.
de Gennes, P. G., 1990, Introduction to Polymer Dynamics, Cambridge University Press, Cambridge, MA.
20.
de Gennes, P. G. 1997, Soft Interfaces: The 1994 Dirac Memorial Lecture, Cambridge University Press, New York, NY.
21.
Doi, M., and Edwards, S. F., 1986, “The Theory of Polymer Dynamics,” Clarendon Press, Oxford.
22.
Edwards
, S. F.
, 1992
, “The Edwards Model
,” International Journal of Modern Physics, B, Condensed Matter Physics, Statistical Physics, Applied Physics
, 6
, pp. 1563
–1594
.23.
Grosberg, A. I., Khokhlov, A. R., and Grosberg, A. I., 1994, The Statistical Physics of Macromolecules, Springer-Verlag, Heidelberg.
24.
Grosberg, A. Y., and Khokhlov, A. R., 1997, Giant Molecules, Academic Press, San Diego, CA.
25.
Neville, A. C., 1993, Biology of Fibrous Composites: Development Beyond the Cell Membrane, Cambridge University Press, Cambridge.
26.
Einstein, A., 1956, Investigations on the Theory of the Brownian Movement, Dover Publications, New York, NY.
27.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, John Wiley & Sons, Inc.
28.
Bird, R. B., Armstrong, R. C., and Hassager, O., 1977, Dynamics of Polymeric Liquids, John Wiley & Sons, Inc.
29.
Soltz
, M. A.
, and Ateshian
, G. A.
, 1998
, “Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,” J. Biomech.
, 31
, pp. 927
–934
.30.
Cussler, E. L., 1997, Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, New York, NY.
Copyright © 2003
by ASME
You do not currently have access to this content.