In vitro self-assembled collagen fibrils form a variety of different structures during dialysis. The self-assembly is dependent on several parameters, such as concentrations of collagen and α1-acid glycoprotein, temperature, dialysis time, and the acid concentration. For a detailed understanding of the assembly pathway and structural features like banding pattern or mechanical properties it is necessary to study single collagen fibrils. In this work we present a fully automated system to control the permeation of molecules through a membrane like a dialysis tubing. This allows us to ramp arbitrary diffusion rate profiles during the self-assembly process of macromolecules, such as collagen. The system combines a molecular sieving method with a computer assisted control system for measuring process variables. With the regulation of the diffusion rate it is possible to control and manipulate the collagen self-assembly process during the whole process time. Its performance is demonstrated by the preparation of various collagen type I fibrils and native collagen type II fibrils. The combination with the atomic force microscope (AFM) allows a high resolution characterization of the self-assembled fibrils. In principle, the represented system can be also applied for the production of other biomolecules, where a dialysis enhanced self-assembly process is used.

1.
Kadler
,
K. E.
,
Holmes
,
D. F.
,
Trotter
,
J. A.
, and
Chapman
,
J. A.
, 1996, “
Collagen Fibril Formation
,”
Biochem. J.
0264-6021,
316
, pp.
1
11
.
2.
Gross
,
J.
,
Highberger
,
J. H.
, and
Schmitt
,
F. O.
, 1951, “
A New Fibrous Structure Obtained from Extracts of Collagenous Connective Tissue
,”
J. Appl. Phys.
0021-8979,
22
(
1
), pp.
112
112
.
3.
Gross
,
J.
,
Highberger
,
J. H.
, and
Schmitt
,
F. O.
, 1952, “
Some Factors Involved in the Fibrogenesis of Collagen Invitro
,” in
Proceedings of the Society for Experimental Biology and Medicine
, Vol.
80
(
3
), pp.
462
465
.
4.
Gross
,
J.
,
Highberger
,
J. H.
, and
Schmitt
,
F. O.
, 1954, “
Collagen Structures Considered as States of Aggregation of a Kinetic Unit—the Tropocollagen Particle
,” in
Proceedings of the National Academy of Sciences of the United States of America
, Vol.
40
(
8
), pp.
679
688
.
5.
Gross
,
J.
, 1956, “
The Behaviour of Collagen Units as a Model in Morphogenesis
,”
J. Biophys. Biochem. Cytol.
0095-9901,
25;2
(
4
, Suppl.), pp.
261
274
.
6.
Gross
,
J.
, and
Kirk
,
D.
, 1958, “
Heat Precipitation of Collagen from Neutral Salt Solutions—Some Rate-Regulating Factors
,”
J. Biol. Chem.
0021-9258,
233
(
2
), pp.
355
360
.
7.
Wood
,
G. C.
, and
Keech
,
M. K.
, 1960, “
Formation of Fibrils from Collagen Solutions. 1. Effect of Experimental Conditions—Kinetic and Electron-Microscope Studies
,”
Biochem. J.
0264-6021,
75
, pp.
588
598
.
8.
Wood
,
G. C.
, 1960, “
Formation of Fibrils from Collagen Solutions. 2. Mechanism of Collagen-Fibril Formation
,”
Biochem. J.
0264-6021,
75
, pp.
598
605
.
9.
Bard
,
J. B.
, and
Chapman
,
J. A.
, 1968, “
Polymorphism in Collagen Fibrils Precipitated at Low pH
,”
Nature (London)
0028-0836,
219
(
160
), pp.
1279
1280
.
10.
Bard
,
J. B. L.
, and
Chapman
,
J. A.
, 1973, “
Diameters of Collagen Fibrils Grown In Vitro
,”
Nature (London), New Biol.
0369-4887,
246
(
151
), pp.
83
84
.
11.
Orekhovich
,
V. N.
,
Tustanovskii
,
A. A.
,
Orekhovich
,
K. D.
, and
Plotnikova
,
N. E.
, 1948, “
O Prokollagene Kozhi
,”
Biochemistry (Mosc.)
0006-2979,
13
(
1
), pp.
55
60
.
12.
Highberger
,
J. H.
,
Gross
,
J.
, and
Schmitt
,
F. O.
, 1951, “
The Interaction of Mucoprotein with Soluble Collagen—An Electron Microscope Study
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
37
(
5
), pp.
286
291
.
13.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
(
9
), pp.
930
933
.
14.
Shattuck
,
M. B.
,
Gustafsson
,
M. G. L.
,
Fisher
,
K. A.
,
Yanagimoto
,
K. C.
,
Veis
,
A.
,
Bhatnagar
,
R. S.
, and
Clarke
,
J.
, 1994, “
Monomeric Collagen Imaged by Cryogenic Force Microscopy
,”
J. Microsc.
0022-2720,
174
, pp.
Rp1
Rp2
.
15.
Fujita
,
Y.
,
Kobayashi
,
K.
, and
Hoshino
,
T.
, 1997, “
Atomic Force Microscopy of Collagen Molecules. Surface Morphology of Segment-Long-Spacing (SLS) Crystallites of Collagen
,”
J. Electron Microsc.
0022-0744,
46
(
4
), pp.
321
326
.
16.
Paige
,
M. F.
,
Rainey
,
J. K.
, and
Goh
,
M. C.
, 1998, “
Fibrous Long Spacing Collagen Ultrastructure Elucidated by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
74
(
6
), pp.
3211
3216
.
17.
Morris
,
V. J.
,
Kirby
,
A. R.
, and
Gunning
,
A. P.
, 1999,
Atomic Force Microscopy for Biologists
,
Imperial College Press
,
London
.
18.
Rainey
,
J. K.
,
Wen
,
C. K.
, and
Goh
,
M. C.
, 2002, “
Hierarchical Assembly and the Onset of Banding in Fibrous Long Spacing Collagen Revealed by Atomic Force Microscopy
,”
Matrix Biol.
0945-053X,
21
(
8
), pp.
647
660
.
19.
Gutsmann
,
T.
,
Fantner
,
G. E.
,
Venturoni
,
M.
,
Ekani-Nkodo
,
A.
,
Thompson
,
J. B.
,
Kindt
,
J. H.
,
Morse
,
D. E.
,
Fygenson
,
D. K.
, and
Hansma
,
P. K.
, 2003, “
Evidence that Collagen Fibrils in Tendons are Inhomogeneously Structured in a Tubelike Manner
,”
Biophys. J.
0006-3495,
84
(
4
), pp.
2593
2598
.
20.
Franzblau
,
C.
,
Schmid
,
K.
,
Faris
,
B.
,
Beldekas
,
J.
,
Garvin
,
P.
,
Kagan
,
H. M.
, and
Baum
,
B. J.
, 1976, “
Interaction of Collagen with Alpha-1-Acid Glycoprotein
,”
Biochim. Biophys. Acta
0006-3002,
427
(
1
), pp.
302
314
.
21.
Newman
,
S.
,
Cloitre
,
M.
,
Allain
,
C.
,
Forgacs
,
G.
, and
Beysens
,
D.
, 1997, “
Viscosity and Elasticity During Collagen Assembly In Vitro: Relevance to Matrix-Driven Translocation
,”
Biopolymers
0006-3525,
41
(
3
), pp.
337
347
.
22.
Pappenheimer
,
J. R.
,
Renkin
,
E. M.
, and
Borrero
,
L. M.
, 1951, “
Filtration, Diffusion and Molecular Sieving through Peripheral Capillary Membranes a Contribution to the Pore Theory of Capillary Permeability
,”
Am. J. Physiol.
0002-9513,
167
(
1
), pp.
13
46
.
23.
Pappenheimer
,
J. R.
, 1953, “
Passage of Molecules Through Capillary Walls
,”
Physiol. Rev.
0031-9333,
33
(
3
), pp.
387
423
.
24.
Renkin
,
E. M.
, 1954, “
Filtration, Diffusion, and Molecular Sieving through Porous Cellulose Membranes
,”
J. Gen. Physiol.
0022-1295,
38
(
2
), pp.
225
243
.
25.
Feins
,
M.
, and
Sirkar
,
K. K.
, 2004, “
Highly Selective Membranes in Protein Ultrafiltration
,”
Biotechnol. Bioeng.
0006-3592,
86
(
6
), pp.
603
611
.
26.
Kiesslich
,
J.
,
Radacher
,
M.
,
Neuhuber
,
F.
,
Meyer
,
H. J.
, and
Zeller
,
K. W.
, 2002, “
On the Use of Nitrocellulose Membranes for Dialysis-Mediated Purification of Ancient DNA from Human Bone and Teeth Extracts
,”
Ancient Biomolecules
,
4
(
2
), pp.
79
87
.
27.
Ruckenstein
,
E.
, and
Zeng
,
X. F.
, 1997, “
Macroporous Chitin Affinity Membranes for Lysozyme Separation
,”
Biotechnol. Bioeng.
0006-3592,
56
(
6
), pp.
610
617
.
28.
Atamanenko
,
I.
,
Kryvoruchko
,
A.
, and
Yurlova
,
L.
, 2004, “
Study of the Scaling Process on Membranes
,”
Desalination
0011-9164,
167
(
1–3
), pp.
327
334
.
29.
Bosch
,
R.
,
Lautenschlager
,
P.
,
Potthast
,
L.
, and
Stapelmann
,
J.
, 1992, “
Experiment Equipment for Protein Crystallization in Mu-G Facilities
,”
J. Cryst. Growth
0022-0248,
122
(
1–4
), pp.
310
316
.
30.
Vergara
,
A.
,
Corvino
,
E.
,
Sorrentino
,
G.
,
Piccolo
,
C.
,
Tortora
,
A.
,
Carotenuto
,
L.
,
Mazzarella
,
L.
, and
Zagari
,
A.
, 2002, “
Crystallization of the Collagen-Like Polypeptide (PPG)(10) Aboard the International Space Station. 1. Video Observation
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
0907-4449,
58
, pp.
1690
1694
.
31.
Berisio
,
R.
,
Vitagliano
,
L.
,
Sorrentino
,
G.
,
Carotenuto
,
L.
,
Piccolo
,
C.
,
Mazzarella
,
L.
, and
Zagari
,
A.
, 2000, “
Effects of Microgravity on the Crystal Quality of a Collagen-Like Polypeptide
,”
Acta Crystallogr., Sect. D: Biol. Crystallogr.
0907-4449,
56
, pp.
55
61
.
32.
Graham
,
J. S.
,
Vomund
,
A. N.
,
Phillips
,
C. L.
, and
Grandbois
,
M.
, 2004, “
Structural Changes in Human Type I Collagen Fibrils Investigated by Force Spectroscopy
,”
Exp. Cell Res.
0014-4827,
299
(
2
), pp.
335
342
.
You do not currently have access to this content.