The objective of this research is to analyze and model the decreases in skin temperature when the hand makes contact with an object at room temperature so that thermal feedback can be incorporated into haptic displays. A thermal model is proposed that predicts the thermal responses of the skin and object surface as well as the heat flux exchanged during hand-object interactions. The model was evaluated by comparing the theoretical predictions of temperature changes to those experimentally measured using an infrared thermal measurement system. The thermal measurement system was designed to overcome the limitations imposed by contact thermal sensors, and was able to measure skin temperature during contact, together with the contact area and contact force. The experimental results indicated that over the pressure range of 0.7310.98kPa, changes in skin temperature were well localized to the contact area and were affected by contact pressure. The pressure in turn influenced both thermal contact resistance and blood flow. Over the range of contact forces typically used in manual exploration, blood perfusion and metabolic heat generation do not appear to have a significant effect on the skin’s thermal responses. The theoretical predictions and the measured data were consistent in characterizing the time course and amplitude of the skin temperature change during contact with differences typically being less than 1°C between the two for pressures greater than 4kPa. These findings indicate that the proposed thermal model is able to characterize and predict the skin temperature responses during hand-object interactions and could be used in a thermal display that simulates the properties of different materials.

1.
Caldwell
,
D. G.
, and
Gosney
,
C.
, 1993, “
Enhanced Tactile Feedback (Tele-Taction) Using a Multi-Functional Sensory System
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
955
960
.
2.
Ino
,
S.
,
Shimizu
,
S.
,
Odagawa
,
T.
,
Sato
,
M.
,
Takahashi
,
M.
,
Izumi
,
T.
, and
Ifukube
,
T.
, 1993, “
A Tactile Display for Presenting Quality of Materials by Changing the Temperature of Skin Surface
,”
IEEE International Workshop on Robot and Human Communication
, pp.
220
224
.
3.
Benali-Khoudja
,
M.
,
Hafez
,
M.
,
Alexandre
,
J. M.
,
Benachour
,
J.
, and
Kheddar
,
A.
, 2003, “
Thermal Feedback Model for Virtual Reality
,”
Proceedings of the International Symposium on Micromechatronics and Human Science
, pp.
153
158
.
4.
Bergamasco
,
M.
,
Alessi
,
A. A.
, and
Calcara
,
M.
, 1997, “
Thermal Feedback in Virtual Environments
,”
Presence: Teleoperators and Virtual Environments
,
6
, pp.
617
629
.
5.
Citerin
,
J.
,
Pocheville
,
A.
, and
Kheddar
,
A.
, 2006, “
A Touch Rendering Device in a Virtual Environment With Kinesthetic and Thermal Feedback
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
3923
3928
.
6.
Deml
,
B.
,
Mihalyi
,
A.
, and
Hanning
,
G.
, 2006, “
Development and Experimental Evaluation of a Thermal Display
,”
Proceedings of 2006 EuroHaptics
, pp.
257
262
.
7.
Ho
,
H.-N.
, and
Jones
,
L. A.
, 2004, “
Material Identification Using Real and Simulated Thermal Cues
,”
Proceedings of 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, pp.
2462
2465
.
8.
Ho
,
H.-N.
, and
Jones
,
L. A.
, 2006, “
Thermal Model for Hand-Object Interactions
,”
Proceedings of the IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, pp.
461
467
.
9.
Kron
,
A.
, and
Schmidt
,
G.
, 2003, “
Multi-Fingered Tactile Feedback from Virtual and Remote Environments
,”
Proceedings of the IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, pp.
16
23
.
10.
Shitzer
,
A.
,
Stoschein
,
L. A.
,
Gonzalez
,
R. R.
, and
Pandolf
,
K. B.
, 1996, “
Lumped-Parameter Tissue Temperature-Blood Perfusion Model of a Cold Stressed Finger Tip
,”
J. Appl. Physiol.
8750-7587,
80
, pp.
1829
1834
.
11.
Yamamoto
,
A.
,
Cros
,
B.
,
Hasgimoto
,
H.
, and
Higuchi
,
T.
, 2004, “
Control of Thermal Tactile Display Based on Prediction of Contact Temperature
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1536
1541
.
12.
Yang
,
G.
,
Kyung
,
K.
,
Srinivasan
,
M. A.
, and
Kwon
,
D.
, 2006, “
Quantitative Tactile Display Device With Pin-Array Type Tactile Feedback and Thermal Feedback
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
3917
3922
.
13.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Forearm
,”
J. Appl. Physiol.
0021-8987,
1
, pp.
93
122
.
14.
Chen
,
F.
,
Nilsson
,
H.
, and
Holmer
,
I.
, 1994, “
Finger Cooling by Contact With Cold Aluminium Surfaces—Effects of Pressure, Mass and Whole Body Thermal Balance
,”
Eur. J. Appl. Physiol.
0301-5548,
69
, pp.
55
60
.
15.
Jay
,
O.
, and
Havenith
,
G.
, 2004, “
Finger Skin Cooling on Contact With Cold Materials: A Comparison Between Male and Female Responses During Short-Term Exposures
,”
Eur. J. Appl. Physiol.
0301-5548,
91
, pp.
373
381
.
16.
Geng
,
Q.
,
Holmer
,
I.
,
Hartog
,
D. E. A.
,
Havenith
,
G.
,
Jay
,
O.
,
Malchaire
,
J.
,
Piette
,
A.
,
Rintamaki
,
H.
, and
Rissanen
,
S.
, 2006, “
Temperature Limit Values for Touching Cold Surfaces With the Fingertip
,”
Ann. Occup. Hyg.
0003-4878,
50
, pp.
851
862
.
17.
Westling
,
G.
, and
Johansson
,
R. S.
, 1987, “
Responses in Glabrous Skin Mechanoreceptors During Precision Grip in Humans
,”
Exp. Brain Res.
0014-4819,
66
, pp.
128
140
.
18.
Mascaro
,
S. A.
, and
Asada
,
H. H.
, 2001, “
Photoplethysmograph Fingernail Sensors for Measuring Finger Forces Without Haptic Obstruction
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
, pp.
698
708
.
19.
Jay
,
O.
, and
Havenith
,
G.
, 2006, “
Differences in Finger Skin Contact Cooling Response Between an Arterial Occlusion and a Vasodilated Condition
,”
J. Appl. Physiol.
8750-7587,
100
, pp.
1596
1601
.
20.
Ho
,
H.-N.
, and
Jones
,
L. A.
, 2007, “
Development and Evaluation of a Thermal Display for Material Identification and Discrimination
,”
ACM Transactions on Applied Perception
,
4
, Article 13, pp.
1
24
.
21.
Jones
,
L. A.
, and
Berris
,
M.
, 2003, “
Material Discrimination and Thermal Perception
,”
Proceedings of the 11th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, pp.
171
178
.
22.
Ho
,
H.-N.
, and
Jones
,
L. A.
, 2006, “
Contribution of Thermal Cues to Material Discrimination and Localization
,”
Percept. Psychophys.
0031-5117,
68
, pp.
118
128
.
23.
Mills
,
A. F.
, 1999,
Heat Transfer
,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Yovanovich
,
M. M.
, 1981, “
Thermal Contact Correlations
,”
AIAA 16th Thermophysics Conference
.
25.
Dellon
,
E. S.
,
Keller
,
K.
,
Moratz
,
V.
, and
Dellon
,
A. L.
, 1995, “
The Relationships Between Skin Hardness, Pressure Perception and Two-Point Discrimination in the Fingertip
,”
J. Hand Surg. [Br]
0266-7681,
20
, pp.
44
48
.
26.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
27.
Sekins
,
K. M.
, and
Emery
,
A. F.
, 1990, “
Thermal Science for Physical Medicine
,”
Therapeutic Heat and Cold
,
J.
Lehmann
, ed.,
Williams and Wilkins
,
Baltimore
, pp.
62
112
.
28.
Pawluk
,
D. T.
, and
Howe
,
R. D.
, 1999, “
Dynamic Contact of the Human Fingerpad Against a Flat Surface
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
605
611
.
29.
Serina
,
E. R.
,
Mote
, Jr.,
C. D.
, and
Rempel
,
D.
, 1997, “
Force Response of the Fingertip Pulp to Repeated Compression—Effects of Loading Rate, Loading Angle and Anthropometry
,”
J. Biomech.
0021-9290,
30
, pp.
1035
1040
.
30.
Smith
,
A. M.
, and
Scott
,
S. H.
, 1996, “
Subjective Scaling of Smooth Surface Friction
,”
J. Neurophysiol.
0022-3077,
75
, pp.
1957
1962
.
31.
Smith
,
A. M.
,
Chapman
,
E.
,
Deslandes
,
M.
,
Langlais
,
J. S.
, and
Thibodeau
,
M. P.
, 2002, “
Role of Friction and Tangential Force Variation in the Subjective Scaling of Tactile Roughness
,”
Exp. Brain Res.
0014-4819,
144
, pp.
211
223
.
32.
Jones
,
L. A.
, and
Lederman
,
S. J.
, 2006,
Human Hand Function
,
Oxford University Press
,
New York
.
33.
Jay
,
O.
, and
Havenith
,
G.
, 2004, “
Skin Cooling on Contact With Cold Materials: The Effect of Blood Flow During Short-Term Exposures
,”
Ann. Occup. Hyg.
0003-4878,
48
, pp.
129
137
.
You do not currently have access to this content.