Tensile strip experiments of bovine corneas have shown that the tissue exhibits a nonlinear rate-dependent stress-strain response and a highly nonlinear creep response that depends on the applied hold stress. In this paper, we present a constitutive model for the finite deformation, anisotropic, nonlinear viscoelastic behavior of the corneal stroma. The model formulates the elastic and viscous response of the stroma as the average of the elastic and viscous response of the individual lamellae weighted by a probability density function of the preferred in-plane lamellar orientations. The result is a microstructure-based model that incorporates the viscoelastic properties of the matrix and lamellae and the lamellar architecture in the response of the stroma. In addition, the model includes a fully nonlinear description of the viscoelastic response of the lamellar(fiber) level. This is in contrast to previous microstructure-based models of fibrous soft tissues, which relied on quasilinear viscoelastic formulations of the fiber viscoelasticity. Simulations of recent tensile strip experiments show that the model is able to predict, well within the bounds of experimental error and natural variations, the cyclic stress-strain behavior and nonlinear creep behavior observed in uniaxial tensile experiments of excised strips of bovine cornea.

1.
Maurice
,
D. M.
, 1957, “
The Structure and Transparency of the Cornea
,”
J. Physiol. (London)
0022-3751,
136
, pp.
263
286
.
2.
Komai
,
Y.
, and
Ushiki
,
T.
, 1991, “
The Three-Dimensional Organisation of Collagen Fibrils in the Human Cornea and Sclera
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
32
, pp.
2244
2258
.
3.
Boote
,
C.
,
Dennis
,
S.
,
Newton
,
R. H.
,
Puri
,
H.
, and
Meek
,
K. M.
, 2003, “
Collagen Fibrils Appear More Closely Packed in the Prepupillary Cornea: Optical and Biomechanical Implications
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
44
, pp.
2941
2948
.
4.
Meek
,
K. M.
,
Blamiers
,
T.
,
Elliott
,
G. F.
,
Gyi
,
T. J.
, and
Nave
,
C.
, 1987, “
The Organization of Collagen Fibrils in the Human Corneal Stroma: A Synchrotron X-Ray Diffraction Study
,”
Curr. Eye Res.
0271-3683,
6
, pp.
841
846
.
5.
Daxer
,
A.
, and
Fratzl
,
P.
, 1997, “
Collagen Fibril Orientation in the Corneal Stroma and Its Implications in Keratoconous
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
38
, pp.
121
129
.
6.
Aghamohammadzadeh
,
H.
,
Newton
,
R. H.
, and
Meek
,
K. M.
, 2005, “
X-Ray Scattering Used to Map the Preferred Collagen Orientation in the Human Cornea and Limbus
,”
Structure (London)
0969-2126,
12
, pp.
249
256
.
7.
Boote
,
C.
,
Dennis
,
S.
,
Huang
,
Y.
,
Quantock
,
A. J.
, and
Meek
,
K. M.
, 2005, “
Lamellar Orientation in Human Cornea in Relation to Mechanical Properties
,”
J. Struct. Biol.
1047-8477,
149
, pp.
1
6
.
8.
Nyquist
,
G. W.
, 1968, “
Rheology of the Cornea: Experimental Techniques and Results
,”
Exp. Eye Res.
0014-4835,
7
, pp.
183
188
.
9.
Woo
,
S. L.-Y.
,
Kobayashi
,
A. S.
,
Schlegel
,
W. A.
, and
Lawrence
,
C.
, 1972, “
Nonlinear Material Properties of Intact Cornea and Sclera
,”
Exp. Eye Res.
0014-4835,
14
, pp.
29
39
.
10.
Andreassen
,
T. T.
,
Simonsen
,
A. H.
, and
Oxlund
,
H.
, 1980, “
Biomechanical Properties of Keratoconous and Normal Corneas
,”
Exp. Eye Res.
0014-4835,
31
, pp.
435
441
.
11.
Jue
,
W.
, and
Maurice
,
D. M.
, 1991, “
The Mechanical Properties of the Rabbit and Human Cornea
,”
J. Biomech.
0021-9290,
24
, pp.
907
922
.
12.
Hoeltzel
,
D. A.
,
Altman
,
P.
,
Buzard
,
K.
, and
Choe
,
K. I.
, 1992, “
Strip Extensiometry for Comparison of the Mechanical Response of Bovine, Rabbit, and Human Corneas
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
202
215
.
13.
Hjortdal
,
J. O.
, 1996, “
Regional Elastic Performance of the Human Cornea
,”
J. Biomech.
0021-9290,
29
, pp.
931
942
.
14.
Shin
,
T. J.
,
Vito
,
R. P.
,
Johnson
,
L.
, and
McCarey
,
B. E.
, 1997, “
The Distribution of Strain in the Human Cornea
,”
J. Biomech.
0021-9290,
30
, pp.
497
503
.
15.
Kampmeier
,
J.
,
Radt
,
B.
,
Birngruber
,
R.
, and
Brinkmann
,
R.
, 2000, “
Thermal and Biomechanical Parameters of Porcine Cornea
,”
Cornea
0277-3740,
19
, pp.
355
363
.
16.
Wollensak
,
G.
,
Spoerl
,
E.
, and
Seiler
,
T.
, 2003, “
Stress-Strain Measurements of Human and Porcine Corneas After Riboflavin-Ultraviolet-A-Induced Cross-Linking
,”
J. Cataract Refractive Surg.
0886-3350,
29
, pp.
1780
1785
.
17.
Boyce
,
B. L.
,
Jones
,
R. E.
,
Nguyen
,
T. D.
, and
Grazier
,
J. M.
, 2007, “
Stress-Controlled Viscoelastic Tensile Response of Bovine Cornea
,”
J. Biomech.
0021-9290,
40
, pp.
2367
2376
.
18.
Hukins
,
D. W. L.
, 1984, “
Collagen Orientation
,”
The Connective Tissue Matrix
,
D. W. L.
Hukins
, ed.,
Macmillan
,
London
, Vol.
5
, pp.
212
240
.
19.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Response of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
410
417
.
20.
Liao
,
J.
, and
Vesely
,
I.
, 2004, “
Relationship Between Collagen Fibrils, Glycosaminoglycans, and Stress Relaxation in Mitral Valve Chordae Tendineae
,”
J. Biomed. Eng.
0141-5425,
2004
, pp.
977
983
.
21.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
, 2003, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
599
605
.
22.
Puxkandl
,
R.
,
Zizak
,
I.
,
Paris
,
O.
,
Keckes
,
J.
,
Tesch
,
W.
,
Bernstorff
,
S.
,
Purslow
,
P.
, and
Fratzl
,
P.
, 2002, “
Viscoelastic Properties of Collagen: Synchrotron Radiation Investigations and Structural Model
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
357
, pp.
191
197
.
23.
Pinsky
,
P. M.
, and
Datye
,
D. V.
, 1991, “
A Microstructurally-Based Finite Element Model of the Incised Human Cornea
,”
J. Biomech.
0021-9290,
24
, pp.
907
922
.
24.
Pinsky
,
P. M.
,
van der Heide
,
D.
, and
Chernyak
,
D.
, 2005, “
Computational Modeling of Mechanical Anisotropy in the Cornea and Sclera
,”
J. Cataract Refractive Surg.
0886-3350,
31
, pp.
136
145
.
25.
Guarnieri
,
F. A.
, 1999, “
Modelo Biomechanico del ojo Para Diseno Asistido por Computadora de la Cirurgua Refractive
,” Ph.D. thesis, Universidad Nacional del Litoral, Santa Fe, Argentina.
26.
Pandolfi
,
A.
, and
Manganiello
,
F.
, 2006, “
A Model for the Human Cornea: Constitutive Formulation and Numerical Analysis
,”
Biomech. Model. Mechanobiol.
,
5
, pp.
237
246
.
27.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
, pp.
1
12
.
28.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
, pp.
15
35
.
29.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
,
Benvenuti
,
J. F.
, and
Leyvraz
,
P. F.
, 1998, “
Viscoelastic Constitutive Law in Large Deformations: Application to Human Knee Ligaments and Tendons
,”
J. Biomech.
0021-9290,
31
, pp.
753
757
.
30.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
31.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2004, “
A Rheological Network Model for the Continuum Anisotropic and Viscoelastic Behavior of Soft Tissue
,”
Biomech. Model. Mechanobiol.
,
3
, pp.
56
65
.
32.
Limbert
,
G.
, and
Middleton
,
J.
, 2004, “
A Transversely Isotropic Viscohyperelastic Material: Application to the Modeling of Biological Soft Connective Tissues
,”
Int. J. Solids Struct.
0020-7683,
2004
, pp.
4237
4260
.
33.
Merodio
,
J.
, and
Rajagopal
,
K. R.
, 2007, “
On Constitutive Equations for Anisotropic Nonlinearly Viscoelastic Solids
,”
Math. Mech. Solids
1081-2865,
12
, pp.
131
147
.
34.
Lanir
,
Y.
, 1980, “
A Microstructure Model for the Rheology of Mammalian Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
332
339
.
35.
Thornton
,
G. M.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
, 2001, “
Ligament Creep Behavior Can be Predicted From Stress Relaxation by Incorporating Fiber Recruitment
,”
J. Rheol.
0148-6055,
45
, pp.
493
507
.
36.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digitial Tendons, Including the Effects of Preconditioning
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
78
84
.
37.
Bischoff
,
J. E.
, 2006, “
Reduced Parameter Formulation for Incorporating Viscoelasticity Into Tissue Level Biomechanics
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
1164
1172
.
38.
Thornton
,
G. M.
,
Oliynyk
,
A.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
, 1997, “
Ligament Creep Behavior Cannot be Predicted From Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament
,”
J. Orthop. Res.
0736-0266,
15
, pp.
652
656
.
39.
Provenzano
,
P.
,
Lakes
,
R. S.
,
Keenan
,
T.
, and
Vanderby
,
R.
, Jr.
, 2001, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
908
914
.
40.
Hingorani
,
R. V.
,
Provenzano
,
P.
,
Lakes
,
R. S.
,
Escarcega
,
A.
, and
Vanderby
,
R.
, Jr.
, 2004, “
Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
306
312
.
41.
Nguyen
,
T. D.
,
Jones
,
R. E.
, and
Boyce
,
B. L.
, 2007, “
Modeling the Anisotropic Finite-Deformation Viscoelastic Behavior of Soft Fiber-Reinforced Composites
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
8366
8389
.
42.
Casey
,
J.
, and
Naghdi
,
P. M.
, 1983, “
On the Use of Invariance Requirements for Intermediate Configurations Associated With the Polar Decomposition of the Deformation Gradient
,”
Q. Appl. Math.
0033-569X,
41
, pp.
339
342
.
43.
Imam
,
A.
, and
Johnson
,
G. C.
, 1998, “
Decomposition of the Deformation Gradient in Thermoelasticity
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
362
366
.
44.
Boote
,
C.
,
Dennis
,
S.
, and
Meek
,
K. M.
, 2004, “
Spatial Mapping of Collagen Fibril Organisation in Primate Cornea—An X-Ray Diffraction Investigation
,”
J. Struct. Biol.
1047-8477,
146
, pp.
359
267
.
45.
Green
,
M. S.
, and
Tolbosky
,
A. V.
, 1946, “
A New Approach to the Theory of Relaxing Polymeric Media
,”
J. Chem. Phys.
0021-9606,
14
, pp.
80
92
.
46.
Lubliner
,
J.
, 1985, “
A Model of Rubber Viscoelasticity
,”
Mech. Res. Commun.
0093-6413,
12
, pp.
93
99
.
47.
Lion
,
A.
, 1996, “
A Constitutive Model for Carbon Black Filled Rubber. Experimental Investigations and Mathematical Representations
,”
Continuum Mech. Thermodyn.
0935-1175,
8
, pp.
153
169
.
48.
Reese
,
S.
, and
Govindjee
,
S.
, 1998, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
3455
82
.
49.
Bergstrom
,
J. S.
, and
Boyce
,
M.
, 1998, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
931
954
.
50.
Bergstrom
,
J.
, and
Boyce
,
M.
, 2001, “
Constitutive Modeling of the Time-Dependent and Cyclic Loading of Elastomers and Application to Soft Biological Tissues
,”
Mech. Mater.
0167-6636,
3
, pp.
523
530
.
51.
Misof
,
K.
,
Rapp
,
G.
, and
Fratzl
,
P.
, 1997, “
A New Molecular Model for Collagen Elasticity Based on Synchrotron X-Ray Scattering Evidence
,”
Biophys. J.
0006-3495,
72
, pp.
1376
1381
.
52.
Eyring
,
H.
, 1936, “
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
0021-9606,
4
, pp.
283
291
.
53.
Ree
,
T.
, and
Eyring
,
H.
, 1955, “
A Theory of Non-Newtonian Flow. I Solution System of High Polymers
,”
J. Appl. Phys.
0021-8979,
26
, pp.
800
809
.
54.
Boyce
,
B. L.
,
Grazier
,
J. M.
,
Jones
,
R. E.
, and
Nguyen
,
T. D.
, 2008, “
Full-Field Deformation of Bovine Cornea Under Constrained Inflation Conditions
,”
Biomaterials
, 0142-9612doi: .
You do not currently have access to this content.