Finite element (FE) implementations of nearly incompressible material models often employ decoupled numerical treatments of the dilatational and deviatoric parts of the deformation gradient. This treatment allows the dilatational stiffness to be handled separately to alleviate ill conditioning of the tangent stiffness matrix. However, this can lead to complex formulations of the material tangent moduli that can be difficult to implement or may require custom FE codes, thus limiting their general use. Here we present an approach, based on work by Miehe (Miehe, 1996, “Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large Strain Computational Inelasticity,” Comput. Methods Appl. Mech. Eng., 134, pp. 223–240), for an efficient numerical approximation of the tangent moduli that can be easily implemented within commercial FE codes. By perturbing the deformation gradient, the material tangent moduli from the Jaumann rate of the Kirchhoff stress are accurately approximated by a forward difference of the associated Kirchhoff stresses. The merit of this approach is that it produces a concise mathematical formulation that is not dependent on any particular material model. Consequently, once the approximation method is coded in a subroutine, it can be used for other hyperelastic material models with no modification. The implementation and accuracy of this approach is first demonstrated with a simple neo-Hookean material. Subsequently, a fiber-reinforced structural model is applied to analyze the pressure-diameter curve during blood vessel inflation. Implementation of this approach will facilitate the incorporation of novel hyperelastic material models for a soft tissue behavior into commercial FE software.

1.
Nielsen
,
P. M.
,
Hunter
,
P. J.
, and
Smaill
,
B. H.
, 1991, “
Biaxial Testing of Membrane Biomaterials: Testing Equipment and Procedures
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
295
300
.
2.
Kyriacou
,
S. K.
,
Shah
,
A. D.
, and
Humphrey
,
J. D.
, 1997, “
Inverse Finite Element Characterization of Nonlinear Hyperelastic Membranes
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
257
262
.
3.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium: II. Parameter Estimation
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
3
), pp.
340
346
.
4.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
5.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2001, “
Simple Shear Testing of Parallel-Fibered Planar Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
170
175
.
6.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
7.
Tong
,
P.
, and
Fung
,
Y. C.
, 1976, “
The Stress-Strain Relationship for the Skin
,”
J. Biomech.
0021-9290,
9
(
10
), pp.
649
657
.
8.
Chew
,
P. H.
,
Yin
,
F. C.
, and
Zeger
,
S. L.
, 1986, “
Biaxial Stress-Strain Properties of Canine Pericardium
,”
J. Mol. Cell. Cardiol.
0022-2828,
18
(
6
), pp.
567
578
.
9.
Fung
,
Y. C.
,
Liu
,
S. Q.
, and
Zhou
,
J. B.
, 1993, “
Remodeling of the Constitutive Equation While a Blood Vessel Remodels Itself Under Stress
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4B
), pp.
453
459
.
10.
Criscione
,
J. C.
,
Sacks
,
M. S.
, and
Hunter
,
W. C.
, 2003, “
Experimentally Tractable, Pseudo-Elastic Constitutive Law for Biomembranes: I. Theory
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
94
99
.
11.
Criscione
,
J. C.
,
Sacks
,
M. S.
, and
Hunter
,
W. C.
, 2003, “
Experimentally Tractable, Pseudo-Elastic Constitutive Law for Biomembranes: II. Application
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
100
105
.
12.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
, 2003, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-Plane Shear
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
372
380
.
13.
Lanir
,
Y.
, 1994, “
Plausibility of Structural Constitutive-Equations for Isotropic Soft-Tissues in Finite Static Deformations
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
61
(
3
), pp.
695
702
.
14.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
15.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
280
287
.
16.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
(
7
), pp.
989
1000
.
17.
Miehe
,
C.
, 1996, “
Numerical Computation of Algorithmic (Consistent) Tangent Moduli in Large-Strain Computational Inelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
134
, pp.
223
240
.
18.
Bathe
,
K. J.
, 1995,
Finite Elements Proceedures
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
19.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester
.
20.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
Chichester
.
21.
2006, ABAQUS, 1.1.14 Analysis of an Automotive Boot Seal, ABAQUS Example Problems Manual, ABAQUS 6.6 Documentation.
22.
Spencer
,
A.
, 1972,
Deformations of Fibre-Reinforced Materials
,
Oxford University Press
,
Glasgow
.
23.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2001, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
34
), pp.
4379
4403
.
24.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Finite Element Implementation of a Fung Elastic Model for Planar Anisotropic Biological Materials
,”
Biomechanics and Modeling in Mechanobiology
,
4
(
2–3
), pp.
190
199
.
You do not currently have access to this content.