In bone-remodeling studies, it is believed that the morphology of bone is affected by its internal mechanical loads. From the 1970s, high computing power enabled quantitative studies in the simulation of bone remodeling or bone adaptation. Among them, Huiskes et al. (1987, “Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis,” J. Biomech. Eng., 20, pp. 1135–1150) proposed a strain energy density based approach to bone remodeling and used the apparent density for the characterization of internal bone morphology. The fundamental idea was that bone density would increase when strain (or strain energy density) is higher than a certain value and bone resorption would occur when the strain (or strain energy density) quantities are lower than the threshold. Several advanced algorithms were developed based on these studies in an attempt to more accurately simulate physiological bone-remodeling processes. As another approach, topology optimization originally devised in structural optimization has been also used in the computational simulation of the bone-remodeling process. The topology optimization method systematically and iteratively distributes material in a design domain, determining an optimal structure that minimizes an objective function. In this paper, we compared two seemingly different approaches in different fields—the strain energy density based bone-remodeling algorithm (biomechanical approach) and the compliance based structural topology optimization method (mechanical approach)—in terms of mathematical formulations, numerical difficulties, and behavior of their numerical solutions. Two numerical case studies were conducted to demonstrate their similarity and difference, and then the solution convergences were discussed quantitatively.

1.
Cowin
,
S. C.
, and
Hegedus
,
D. H.
, 1976, “
Bone Remodeling I: Theory of Adaptive Elasticity
,”
J. Elast.
0374-3535,
6
, pp.
313
326
.
2.
Fyhrie
,
D. P.
, and
Carter
,
D. R.
, 1986, “
A Unifying Principle Relating Stress to Trabecular Bone Morphology
,”
J. Orthop. Res.
0736-0266,
4
, pp.
304
317
.
3.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Sloof
,
T. J.
, 1987, “
Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis
,”
J. Biomech.
0021-9290,
20
, pp.
1135
1150
.
4.
Beaupré
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
, 1990, “
An Approach for Time-Dependent Bone Modeling and Remodeling—Theoretical Development
,”
J. Orthop. Res.
0736-0266,
8
, pp.
651
661
.
5.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. R.
, 1992, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
0021-9290,
25
, pp.
1425
1441
.
6.
Mullender
,
M. G.
,
Huiskes
,
R.
, and
Weinans
,
H.
, 1994, “
A Physiological Approach to the Simulation of Bone Remodeling as a Self-Organizational Control Process
,”
J. Biomech.
0021-9290,
27
, pp.
1389
1394
.
7.
Jacobs
,
C. R.
,
Levenston
,
M. E.
,
Beaupré
,
G. S.
,
Simo
,
J. C.
, and
Carter
,
D. R.
, 1995, “
Numerical Instabilities in Bone Remodeling Simulations: The Advantages of a Node-Based Finite Element Approach
,”
J. Biomech.
0021-9290,
28
, pp.
449
459
.
8.
Luenberger
,
D. G.
, 1989,
Linear and nonlinear programming
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
9.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
10.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
0934-4373,
1
, pp.
193
303
.
11.
Xie
,
Y. M.
, and
Steven
,
G. P.
, 1993, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
0045-7949,
49
, pp.
885
896
.
12.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
, 1994, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissur Level Stress
,”
J. Biomech.
0021-9290,
27
, pp.
433
444
.
13.
Fernandes
,
P. R.
, and
Rodrigues
,
H. C.
, 1999, “
A Material Optimization Model for Bone Remodeling Around Cementless Hip Stems
,”
Proceedings of the 9th European Conference on Computational Mechanics
, Munich, Germany.
14.
Bagge
,
M.
, 2000, “
A Model of Bone Adaptation as an Optimization Process
,”
J. Biomech.
0021-9290,
33
, pp.
1349
1357
.
15.
Huiskes
,
R.
, 2000, “
If Bone is the Answer, Then What is the Question?
J. Anat.
0021-8782,
197
, pp.
145
156
.
16.
Harrigan
,
T. P.
, and
Hamilton
,
J. J.
, 1994, “
Bone Remodeling and Structural Optimization
,”
J. Biomech.
0021-9290,
27
, pp.
323
328
.
17.
Subbaraya
,
G.
, and
Bartel
,
D. L.
, 2000, “
A Reconciliation of Local and Global Models for Bone Remodeling Through Optimization Theory
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
72
76
.
18.
Jacobs
,
C. R.
,
Levenston
,
M. E.
,
Beaupré
,
G. S.
, and
Simo
,
J. C.
, 1992, “
A New Implementation of Finite Element-Based Remodeling
,”
Proceedings of the International Symposium on Computer Methods in Biomechanics & Biomedical Engineering
, Swansea, pp.
5
7
.
19.
Diaz
,
A.
, and
Sigmund
,
O.
, 1995, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
0934-4373,
10
, pp.
40
45
.
20.
Matsui
,
K.
, and
Terada
,
K.
, 2004, “
Continuous Approximation of Material Distribution for Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
1925
1944
.
21.
Sigmund
,
O.
, 1994, “
Design of Material Structures Using Topology Optimization
,” Ph.D. thesis, Technical University of Denmark, Denmark.
22.
Haug
,
E. J.
,
Choi
,
K. K.
, and
Komkov
,
V.
, 1986,
Design Sensitivity Analysis of Structural Systems
,
Academic
,
New York
.
23.
Borrvall
,
T.
, 2001, “
Topology Optimization of Elastic Continua Using Restriction
,”
Arch. Comput. Methods Eng.
1134-3060,
8
, pp.
351
385
.
24.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6605
6627
.
25.
Prager
,
W.
, 1968, “
Optimality Criteria in Structural Design
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
61
, pp.
794
796
.
26.
Xinghua
,
Z.
,
He
,
G.
,
Dong
,
Z.
, and
Bingzhao
,
G.
, 2002, “
A Study of the Effect of Non-Linearities in the Equation of Bone Remodeling
,”
J. Biomech.
0021-9290,
35
, pp.
951
960
.
27.
He
,
G.
, and
Xinghua
,
Z.
, 2006, “
The Numerical Simulation of Osteophyte Formation on the Edge of the Vertebral Body Using Quantitative Bone Remodeling Theory
,”
Joint Bone Spine
,
73
, pp.
95
101
.
28.
Wilke
,
H. J.
,
Rohlmann
,
A.
,
Neller
,
S.
,
Schultheiss
,
M.
,
Bergmann
,
G.
,
Graichen
,
F.
, and
Claes
,
L. E.
, 2001, “
Is it Possible to Simulate Physiologic Loading Conditions by Applying Pure Moments? A Comparison of In Vivo And In Vitro Load Components in an Internal Fixator
,”
Spine
0362-2436,
26
, pp.
636
642
.
29.
Tovar
,
A.
,
Gano
,
S. E.
,
Mason
,
J. J.
, and
Renaud
,
J. E.
, 2005, “
Optimum Design of an Interbody Implant for Lumbar Spine Fixation
,”
Adv. Eng. Software
0965-9978,
36
, pp.
634
642
.
30.
Xinghua
,
Z.
,
Xin
,
D.
,
Yimin
,
Z.
, and
Zhenyu
,
L.
, 1993, “
A Functional Adaptive Study in Long Bone
,”
J. Biomed. Eng.
0141-5425,
15
, pp.
190
192
.
31.
Xin
,
D.
,
Xinghua
,
Z.
, and
Xiuqin
,
Y.
, 1996, “
Adaptational Bone Remodeling on the Radius After the Ulnar Osteotomy
,”
J. Biomed. Eng.
0141-5425,
15
, pp.
190
192
.
You do not currently have access to this content.