Mechanical deformation of cell-seeded electrospun matrices plays an important role in cell signaling. However, electrospun biomaterials have inherently complex geometries due to the random deposition of fibers during the electrospinning process. This confounds attempts at quantifying strains exerted on adherent cells during electrospun matrix deformation. We have developed a novel mechanical test platform that allows deposition and tensile testing of electrospun fibers in a highly parallel arrangement to simplify mechanical analysis of the fibers alone and with adherent cells. The device is capable of optically recording fiber strain in a cell culture environment. Here we report on the mechanical and viscoelastic properties of highly parallel electrospun poly(ε-caprolactone) fibers. Force-strain data derived from this device will drive the development of cellular mechanotransduction studies as well as the customization of electrospun matrices for specific engineered tissue applications.

References

1.
Baker
,
B. M.
,
Nerurkar
,
N. L.
,
Burdick
,
J. A.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
, 2009, “
Fabrication and Modeling of Dynamic Multipolymer Nanofibrous Scaffolds
,”
J. Biomech. Eng.
,
131
(
10
), p.
101012
.
2.
Phipps
,
M. C.
,
Clem
,
W. C.
,
Catledge
,
S. A.
,
Xu
,
Y.
,
Hennessy
,
K. M.
,
Thomas
,
V.
,
Jablonsky
,
M. J.
,
Chowdhury
,
S.
,
Stanishevsky
,
A. V.
,
Vohra
,
Y. K.
, and
Bellis
,
S. L.
, 2011, “
Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite
,”
PLoS ONE
,
6
(
2
), p.
e16813
.
3.
Amoroso
,
N. J.
,
D’Amore
,
A.
,
Hong
,
Y.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2011, “
Elastomeric Electrospun Polyurethane Scaffolds: The Interrelationship Between Fabrication Conditions, Fiber Topology, and Mechanical Properties
,”
Adv. Mater.
,
23
(
1
), pp.
106
111
.
4.
Courtney
,
T.
,
Sacks
,
M. S.
,
Stankus
,
J.
,
Guan
,
J.
, and
Wagner
,
W. R.
, 2006, “
Design and Analysis of Tissue Engineering Scaffolds That Mimic Soft Tissue Mechanical Anisotropy
,”
Biomaterials
,
27
(
19
), pp.
3631
3638
.
5.
D’Amore
,
A.
,
Stella
,
J. A.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2010, “
Characterization of the Complete Fiber Network Topology of Planar Fibrous Tissues and Scaffolds
,”
Biomaterials
,
31
(
20
), pp.
5345
5354
.
6.
Stella
,
J. A.
,
D’Amore
,
A.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2010, “
On the Biomechanical Function of Scaffolds for Engineering Load-Bearing Soft Tissues
,”
Acta Biomater.
6
(
7
), pp.
2365
2381
.
7.
Driscoll
,
T. P.
,
Nerurkar
,
N. L.
,
Jacobs
,
N. T.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
, 2011, “
Fiber Angle and Aspect Ratio Influence the Shear Mechanics of Oriented Electrospun Nanofibrous Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1627
1636
.
8.
Lake
,
S. P.
, and
Barocas
,
V. H.
, 2011, “
Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1891
1903
.
9.
Mauck
,
R. L.
,
Baker
,
B. M.
,
Nerurkar
,
N. L.
,
Burdick
,
J. A.
,
Li
,
W. J.
,
Tuan
,
R. S.
, and
Elliot
,
D. M.
, 2009, “
Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration
,”
Tissue Eng. B Rev.
,
15
(
2
), pp.
171
193
.
10.
Nerurkar
,
N. L.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
, 2007, “
Mechanics of Oriented Electrospun Nanofibrous Scaffolds for Annulus Fibrous Tissue Engineering
,”
J. Orthop. Res.
,
25
(
8
), pp.
1018
1028
.
11.
Raghupathy
,
R.
, and
Barocas
,
V. H.
, 2010, “
Generalized Anisotropic Inverse Mechanics for Soft Tissues
,”
J. Biomech. Eng.
,
132
(
8
), p.
081006
.
12.
Raghupathy
,
R.
,
Witzenburg
,
C.
,
Lake
,
S. P.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
, 2011, “
Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs
,”
J. Biomech. Eng.
,
133
(
9
), p.
091011
.
13.
Stella
,
J. A.
,
Liao
,
J.
,
Hong
,
Y.
,
David Merryman
,
W.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2008, “
Tissue-to-Cellular Level Deformation Coupling in Cell Micro-Integrated Elastomeric Scaffolds
,”
Biomaterials
,
29
(
22
), pp.
3228
3236
.
14.
Stella
,
J. A.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
, 2010, “
Scale-Dependent Fiber Kinematics of Elastomeric Electrospun Scaffolds for Soft Tissue Engineering
,”
J. Biomed. Mater. Res.
,
93
(
3
), pp.
1032
1042
.
15.
Tan
,
E. P. S.
, and
Lim
,
C. T.
, 2004, “
Novel Approach to Tensile Testing of Micro- and Nanoscale Fibers
,”
Rev. Sci. Instrum.
,
75
(
8
), pp.
2581
2585
.
16.
Tan
,
E. P. S.
, and
Lim
,
C. T.
, 2004, “
Physical Properties of a Single Polymeric Nanofiber
,”
Appl. Phys. Lett.
,
84
(
9
), pp.
1603
1605
.
17.
Tan
,
E. P. S.
,
Goh
,
C. N.
,
Sow
,
C. H.
,
Lim
,
C. T.
, 2005, “
Tensile Test of a Single Nanofiber Using an Atomic Force Microscope Tip
,”
Appl. Phys. Lett.
,
86
(
7
), p.
073115
.
18.
Tan
,
E. P.
,
Ng
,
S. Y.
, and
Lim
,
C. T.
, 2005, “
Tensile Testing of a Single Ultrafine Polymeric Fiber
,”
Biomaterials
,
26
(
13
), pp.
1453
1456
.
19.
Baker
,
S.
,
Sigley
,
J.
,
Helms
,
C. C.
,
Stitzel
,
J.
,
Berry
,
J.
,
Bonin
,
K.
, and
Guthold
,
M.
, 2012, “
The Mechanical Properties of Dry, Electrospun Fibrinogen Fibers
,”
Mater. Sci. Eng.
, C,
32
, pp.
215
221
.
20.
Carlisle
,
C. R.
,
Coulais
,
C.
,
Namboothiry
,
M.
,
Carroll
,
D. L.
,
Hantgan
,
R. R.
, and
Guthold
,
M.
, 2009, “
The Mechanical Properties of Individual, Electrospun Fibrinogen Fibers
,”
Biomaterials
,
30
(
6
), pp.
1205
1213
.
21.
Croisier
,
F.
,
Duwez
,
A. S.
,
Jérôme
,
C.
,
Léonard
,
A. F.
,
van der Werf
,
K. O.
,
Dijkstra
,
P. J.
, and
Bennink
,
M. L.
, 2012, “
Mechanical Testing of Electrospun PCL Fibers
,”
Acta Biomater
.,
8
(
1
), pp.
218
224
.
22.
Stylianopoulos
,
T.
,
Bashur
,
C. A.
,
Goldstein
,
A. S.
,
Guelcher
,
S. A.
,
Barocas
,
V. H.
, 2008, “
Computational Predictions of the Tensile Properties of Electrospun Fibre Meshes: Effect of Fibre Diameter and Fibre Orientation
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
4
), pp.
326
335
.
23.
Balestrini
,
J. L.
,
Chaudhry
,
S.
,
Sarrazy
,
V.
,
Koehler
,
A.
, and
Hinz
,
B.
, 2012, “
The Mechanical Memory of Lung Myofibroblasts
,”
Integr. Comp. Biol.
,
4
(
4
), pp.
410
421
.
24.
Heo
,
S. J.
,
Nerurkar
,
N. L.
,
Baker
,
B. M.
,
Shin
,
J. W.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
, 2011, “
Fiber Stretch and Reorientation Modulates Mesenchymal Stem Cell Morphology and Fibrous Gene Expression on Oriented Nanofibrous Microenvironments
,”
Ann. Biomed. Eng.
,
39
(
11
), pp.
2780
2790
.
25.
Huang
,
X.
,
Yang
,
N.
,
Fiore
,
V. F.
,
Barker
,
T. H.
,
Sun
,
Y.
,
Morris
,
S. W.
,
Ding
,
Q.
,
Thannickal
,
V. J.
, and
Zhou
,
Y.
, 2012, “
Matrix Stiffness-Induced Myofibroblast Differentiation is Mediated by Intrinsic Mechanotransduction
,”
Am. J. Respir. Cell Mol. Biol.
,
1
, pp.
1
41
.
26.
Kurpinski
,
K.
,
Chu
,
J.
,
Hashi
,
C.
, and
Li
,
S.
, 2006, “
Anisotropic Mechanosensing by Mesenchymal Stem Cells
,”
Proc. Natl. Acad. Sci.
,
103
(
44
), pp.
16095
16100
.
27.
Mann
,
J. M.
,
Lam
,
R. H.
,
Weng
,
S.
,
Sun
,
Y.
, and
Fu
,
J.
, 2011, “
A Silicone-Based Stretchable Micropost Array Membrane for Monitoring Live-Cell Subcellular Cytoskeletal Response
,”
Lab Chip
,
12
(
4
), pp.
731
740
.
28.
Park
,
J. S.
,
Chu
,
J. S.
,
Cheng
,
C.
,
Chen
,
F.
,
Chen
,
D.
, and
Li
,
S.
, 2004, “
Differential Effects of Equiaxial and Uniaxial Strain on Mesenchymal Stem Cells
,”
Biotechnol. Bioeng.
,
88
(
3
), pp.
359
368
.
29.
Park
,
J. S.
,
Huang
,
N. F.
,
Kurpinski
,
K. T.
,
Patel
,
S.
,
Hsu
,
S.
,
Li
,
S.
, 2007, “
Mechanobiology of Mesenchymal Stem Cells and Their Use in Cardiovascular Repair
,”
Front. Biosci.
,
12
, pp.
5098
5116
.
30.
Tzima
,
E.
,
Irani-Tehrani
,
M.
,
Kiosses
,
W. B.
,
Dejana
,
E.
,
Schultz
,
D. A.
,
Engelhardt
,
B.
,
Cao
,
G.
,
DeLisser
,
H.
, and
Schwartz
,
M. A.
, 2005, “
A Mechanosensory Complex That Mediates the Endothelial Cell Response to Fluid Shear Stress
,”
Nature
,
437
(
7057
), pp.
426
431
.
31.
Zhang
,
H.
,
Landmann
,
F.
,
Zahreddine
,
H.
,
Rodriguez
,
D.
,
Koch
,
M.
,
Labouesse
,
M. A.
, 2011, “
Tension-Induced Mechanotransduction Pathway Promotes Epithelial Morphogenesis
,”
Nature
,
471
(
7336
), pp.
99
103
.
32.
Lim
,
C. T.
,
Tan
,
E. P. S.
, and
Ng
,
S. Y.
, 2008, “
Effects of Crystalline Morphology on the Tensile Properties of Electrospun Polymer Nanofibers
,”
Appl. Phys. Lett.
,
92
(
14
), p.
141908
11
.
33.
Creszenzi
,
V.
,
Mazini
,
G.
,
Calzolari
,
G.
, and
Borri
,
C.
, 1972, “
Thermodynamics of Fusion of Poly-β-Propiolactone and Poly-∈-Caprolactone. Comparative Analysis of the Melting of Aliphatic Polylactone and Polyester Chains
,”
Eur. Polym. J.
,
8
(
3
), pp.
449
463
.
34.
Thomas
,
V.
,
Jose
,
M.
,
Chowdhury
,
S.
,
Sullivan
,
J.
,
Dean
,
D.
, and
Vohra
,
Y.
, 2006, “
Mechano-Morphological Studies of Aligned Nanofibrous Scaffolds of Polycaprolactone Fabricated by Electrospinning
,”
J. Biomater. Sci., Polym. Ed.
,
17
, pp.
969
984
.
35.
Kim
,
G. H.
, 2008, “
Electrospun PCL Nanofibers With Anisotropic Mechanical Properties as a Biomedical Scaffold
,”
Biomed. Mater.
,
3
(
2
), p.
025010
.
You do not currently have access to this content.