This study is aimed to develop a high quality, extensively validated finite element (FE) human head model for enhanced head injury prediction and prevention. The geometry of the model was based on computed tomography (CT) and magnetic resonance imaging scans of an adult male who has the average height and weight of an American. A feature-based multiblock technique was adopted to develop hexahedral brain meshes including the cerebrum, cerebellum, brainstem, corpus callosum, ventricles, and thalamus. Conventional meshing methods were used to create the bridging veins, cerebrospinal fluid, skull, facial bones, flesh, skin, and membranes—including falx, tentorium, pia, arachnoid, and dura. The head model has 270,552 elements in total. Thirty five loading cases were selected from a range of experimental head impacts to check the robustness of the model predictions based on responses including the brain pressure, relative skull-brain motion, skull response, and facial response. The brain pressure was validated against intracranial pressure data reported by Nahum et al. (1977, “Intracranial Pressure Dynamics During Head Impact,” Proc. 21st Stapp Car Crash Conference, SAE Technical Paper No. 770922) and Trosseille et al. (1992, “Development of a F.E.M. of the Human Head According to a Specific Test Protocol,” Proc. 36th Stapp Car Crash Conference, SAE Technical Paper No. 922527). The brain motion was validated against brain displacements under sagittal, coronal, and horizontal blunt impacts performed by Hardy et al. (2001, “Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-Ray,” Stapp Car Crash Journal, 45, pp. 337–368; and 2007, “A Study of the Response of the Human Cadaver Head to Impact,” Stapp Car Crash Journal, 51, pp. 17–80). The facial bone responses were validated under nasal impact (Nyquist et al. 1986, “Facial Impact Tolerance and Response,” Proc. 30th Stapp Car Crash Conference, SAE Technical Paper No. 861896), zygoma and maxilla impact (Allsop et al. 1988, “Facial Impact Response – A Comparison of the Hybrid III Dummy and Human Cadaver,” Proc. 32nd Stapp Car Crash Conference, SAE Technical Paper No. 881719)]. The skull bones were validated under frontal angled impact, vertical impact, and occipital impact (Yoganandan et al. 1995, “Biomechanics of Skull Fracture,” J Neurotrauma, 12(4), pp. 659–668) and frontal horizontal impact (Hodgson et al. 1970, “Fracture Behavior of the Skull Frontal Bone Against Cylindrical Surfaces,” 14th Stapp Car Crash Conference, SAE International, Warrendale, PA). The FE head model was further used to study injury mechanisms and tolerances for brain contusion (Nahum et al. 1976, “An Experimental Model for Closed Head Impact Injury,” 20th Stapp Car Crash Conference, SAE International, Warrendale, PA). Studies from 35 loading cases demonstrated that the FE head model could predict head responses which were comparable to experimental measurements in terms of pattern, peak values, or time histories. Furthermore, tissue-level injury tolerances were proposed. A maximum principal strain of 0.42% was adopted for skull cortical layer fracture and maximum principal stress of 20 MPa was used for skull diploë layer fracture. Additionally, a plastic strain threshold of 1.2% was used for facial bone fracture. For brain contusion, 277 kPa of brain pressure was calculated from reconstruction of one contusion case.

References

1.
Ward
,
C. C.
, and
Thompson
,
R. B.
,
1975
, “
The Development of a Detailed Finite Element Brain Model
,”
19th Stapp Car Crash Conference
,
San Diego, CA
, SAE Technical Paper No. 751163.
2.
Yang
,
K. H.
,
Mao
,
H.
,
Wagner
,
C.
,
Zhu
,
F.
,
Chou
,
C. C.
, and
King
,
A. I.
,
2011
, “
Modeling of the Brain for Injury Prevention
,”
Neural Tissue Biomechanics
,
L. E.
Bilston
, ed.,
Springer-Verlag
,
Berlin Heidelberg
.
3.
Kleiven
,
S.
, and
Hardy
,
W. N.
,
2002
, “
Correlation of an FE Model of the Human Head With Local Brain Motion–Consequences for Injury Prediction
,”
Stapp Car Crash Journal
,
46
, pp.
123
144
.
4.
Takhounts
,
E. G.
,
Ridella
,
S. A.
,
Hasija
,
V.
,
Tannous
,
R. E.
,
Campbell
,
J. Q.
,
Malone
,
D.
,
Danelson
,
K.
,
Stitzel
,
J.
,
Rowson
,
S.
, and
Duma
,
S.
,
2008
, “
Investigation of Traumatic Brain Injuries Using The Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model
,”
Stapp Car Crash Journal
,
52
, pp.
1
31
.
5.
Zhang
,
L.
,
Yang
,
K. H.
,
Dwarampudi
,
R.
,
Omori
,
K.
,
Li
,
T.
,
Chang
,
K.
,
Hardy
,
W. N.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
2001
, “
Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation
,”
Stapp Car Crash Journal
,
45
, pp.
369
394
.
6.
Willinger
,
R.
,
Kang
,
H. S.
, and
Diaw
,
B.
,
1999
, “
Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts
,”
Ann. Biomed. Eng.
,
27
(
3
), pp.
403
410
.10.1114/1.165
7.
Hardy
,
W. N.
,
Mason
,
M. J.
,
Foster
,
C. D.
,
Shah
,
C. S.
,
Kopacz
,
J. M.
,
Yang
,
K. H.
,
King
,
A. I.
,
Bishop
,
J.
,
Bey
,
M.
,
Anderst
,
W.
, and
Tashman
,
S.
,
2007
, “
A Study of the Response of the Human Cadaver Head to Impact
,”
Stapp Car Crash Journal
,
51
, pp.
17
80
.
8.
Hardy
,
W. N.
,
Foster
,
C. D.
,
Mason
,
M. J.
,
Yang
,
K. H.
,
King
,
A. I.
, and
Tashman
,
S.
,
2001
, “
Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-Ray
,”
Stapp Car Crash Journal
,
45
, pp.
337
368
.
9.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Geer
,
C. P.
,
Wuertzer
,
S. D.
,
Martin
,
R. S.
, and
Stitzel
,
J. D.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Annals Biomed, Eng.
,
39
(
10
), pp.
2568
2583
.10.1007/s10439-011-0359-5
10.
Lynnerup
,
N.
,
Astrup
,
J. G.
, and
Sejrsen
,
B.
,
2005
, “
Thickness of the Human Cranial Diploe in Relation to Age, Sex and General Body Build
,”
Head Face Med.
,
1
, p.
13
.10.1186/1746-160X-1-13
11.
Horgan
,
T. J.
, and
Gilchrist
,
M.
,
2003
, “
The Creation of Three-Dimensional Finite Element Models for Simulating Head Impact Biomechanics
,”
IJCrash
,
8
(
4
), pp.
353
366
.
12.
Kallemeyn
,
N. A.
,
Tadepalli
,
S. C.
,
Shivanna
,
K. H.
, and
Grosland
,
N. M.
,
2009
, “
An Interactive Multiblock Approach to Meshing the Spine
,”
Comput. Methods Programs Biomed.
,
95
(
3
), pp.
227
235
.10.1016/j.cmpb.2009.03.005
13.
Schonning
,
A.
,
Oommen
,
B.
,
Ionescu
,
I.
, and
Conway
,
T.
,
2009
, “
Hexahedral Mesh Development of Free-Formed Geometry: The Human Femur Exemplified
,”
Comput.-Aided Des.
,
41
(
8
), pp.
566
572
.10.1016/j.cad.2007.10.007
14.
Shivanna
,
K. H.
,
Tadepalli
,
S. C.
, and
Grosland
,
N. M.
,
2010
, “
Feature-Based Multiblock Finite Element Mesh Generation
,”
Comput.-Aided Des.
,
42
, pp.
1108
1116
.10.1016/j.cad.2010.07.005
15.
De Santis
,
G.
,
De Beule
,
M.
,
Van Canneyt
,
K.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
,
2011
, “
Full-Hexahedral Structured Meshing for Image-Based Computational Vascular Modeling
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1318
1325
.10.1016/j.medengphy.2011.06.007
16.
Mao
,
H.
,
Gao
,
H.
,
Cao
,
L.
,
Genthikatti
,
V.
, and
Yang
,
K. H.
,
2013
, “
Development of High-Quality Hexahedral Human Brain Meshes Using Feature-Based Multi-Block Approach
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
3
), pp.
271
279
.10.1080/10255842.2011.617005
17.
Delye
,
H.
,
Goffin
,
J.
,
Verschueren
,
P.
,
Vander Sloten
,
J.
,
Van der Perre
,
G.
,
Alaerts
,
H.
,
Verpoest
,
I.
, and
Berckmans
,
D.
,
2006
, “
Biomechanical Properties of the Superior Sagittal Sinus-Bridging Vein Complex
,”
Stapp Car Crash Journal
,
50
, pp.
625
636
.
18.
Oka
,
K.
,
Rhoton
,
A. L.
Jr.
,
Barry
,
M.
, and
Rodriguez
,
R.
,
1985
, “
Microsurgical Anatomy of the Superficial Veins of the Cerebrum
,”
Neurosurgery
,
17
(
5
), pp.
711
748
.10.1227/00006123-198511000-00003
19.
Lee
,
M. C.
, and
Haut
,
R. C.
,
1989
, “
Insensitivity of Tensile Failure Properties of Human Bridging Veins to Strain Rate: Implications in Biomechanics of Subdural Hematoma
,”
J. Biomech.
,
22
(
6–7
), pp.
537
542
.10.1016/0021-9290(89)90005-5
20.
Han
,
H.
,
Tao
,
W.
, and
Zhang
,
M.
,
2007
, “
The Dural Entrance of Cerebral Bridging Veins Into the Superior Sagittal Sinus: An Anatomical Comparison Between Cadavers and Digital Subtraction Angiography
,”
Neuroradiology
,
49
(
2
), pp.
169
175
.10.1007/s00234-006-0175-z
21.
Yamashima
,
T.
, and
Friede
,
R. L.
,
1984
, “
Why do Bridging Veins Rupture Into the Virtual Subdural Space?
J. Neurology, Neurosurg. Psychiatry
,
47
(
2
), pp.
121
127
.10.1136/jnnp.47.2.121
22.
Bilston
,
L. E.
,
2011
, “
Brain Tissue Mechanical Properties
,”
Stud. Mechanobiol. Tissue Eng. Biomater.
,
3
, pp.
11
24
.10.1007/978-3-642-13890-4
23.
Chatelin
,
S.
,
Constantinesco
,
A.
, and
Willinger
,
R.
,
2010
, “
Fifty Years of Brain Tissue Mechanical Testing: From In Vitro to In Vivo Investigations
,”
Biorheology
,
47
(
5–6
), pp.
255
276
.
24.
McElhaney
,
J. H.
,
Fogle
,
J. L.
,
Melvin
,
J. W.
,
Haynes
,
R. R.
,
Roberts
,
V. L.
, and
Alem
,
N. M.
,
1970
, “
Mechanical Properties on Cranial Bone
,”
J. Biomech.
,
3
(
5
), pp.
495
511
.10.1016/0021-9290(70)90059-X
25.
Wood
,
J. L.
,
1971
, “
Dynamic Response of Human Cranial Bone
,”
J. Biomech.
,
4
(
1
), pp.
1
12
.10.1016/0021-9290(71)90010-8
26.
Melvin
,
J. W.
,
Robbins
,
D. H.
, and
Roberts
,
V. L.
,
1969
, “
The Mechanical Properties of the Diploë Layer in the Human Skull in Compression
,”
Dev. Mech.
,
5
, pp.
811
818
.
27.
Jin
,
X.
,
Ma
,
C.
,
Zhang
,
L.
,
Yang
,
K. H.
,
King
,
A. I.
,
Dong
,
G.
, and
Zhang
,
J.
,
2007
, “
Biomechanical Response of the Bovine Pia-Arachnoid Complex to Normal Traction Loading at Varying Strain Rates
,”
Stapp Car Crash Journal
,
51
, pp.
115
126
.
28.
Jin
,
X.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2010
, “
Mechanical Properties of Bovine Pia-Arachnoid Complex in Shear
,”
J. Biomech.
,
44
(
3
), pp.
467
474
.10.1016/j.jbiomech.2010.09.035
29.
Nahum
,
A. M.
,
Smith
,
R.
, and
Ward
,
C. C.
,
1977
, “
Intracranial Pressure Dynamics During Head Impact
,”
Proc. 21st Stapp Car Crash Conference
, SAE Technical Paper No. 770922.
30.
Trosseille
,
X.
,
Tarriere
,
C.
,
Lavaste
,
F.
,
Guilon
,
F.
, and
Domont
,
A.
,
1992
, “
Development of a F.E.M. of the Human Head According to a Specific Test Protocol
,”
Proc. 36th Stapp Car Crash Conference
, SAE Technical Paper No. 922527.
31.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Sances
,
A.
Jr.
,
Walsh
,
P. R.
,
Ewing
,
C. L.
,
Thomas
,
D. J.
, and
Snyder
,
R. G.
,
1995
, “
Biomechanics of Skull Fracture
,”
J. Neurotrauma
,
12
(
4
), pp.
659
668
.10.1089/neu.1995.12.659
32.
Hodgson
,
V. R.
,
Brinn
,
J.
,
Thomas
,
L. M.
, and
Greenberg
,
S. W.
,
1970
, “
Fracture Behavior of the Skull Frontal Bone Against Cylindrical Surfaces
,”
14th Stapp Car Crash Conference
,
SAE International
,
Warrendale, PA
.
33.
Nyquist
,
G. W.
,
Cavanaugh
,
J. M.
,
Goldberg
,
S. J.
, and
King
,
A. I.
,
1986
, “
Facial Impact Tolerance and Response.
,”
Proc. 30th Stapp Car Crash Conference
, SAE Technical Paper No. 861896.
34.
Allsop
,
D. L.
,
Warner
,
C. Y.
,
Wille
,
M. G.
,
Scheider
,
D. C.
, and
Nahum
,
A. M.
,
1988
, “
Facial Impact Response—A Comparison of the Hybrid III Dummy and Human Cadaver
,”
Proc. 32nd Stapp Car Crash Conference
, SAE Technical Paper No. 881719.
35.
Nahum
,
A. M.
, and
Smith
,
R. W.
,
1976
, “
An Experimental Model for Closed Head Impact Injury
,”
20th Stapp Car Crash Conference
,
SAE International
,
Warrendale, PA
.
36.
Cormier
,
J.
,
Manoogian
,
S.
,
Bisplinghoff
,
J.
,
Rowson
,
S.
,
Santago
,
A.
,
McNally
,
C.
,
Duma
,
S.
, and
Bolte
,
J. T.
,
2011
, “
The Tolerance of the Frontal Bone to Blunt Impact
,”
ASME J. Biomech. Eng
,
133
(
2
), p.
021004
.10.1115/1.4003312
37.
Al-Bsharat
,
A.
,
Hardy
,
W. N.
,
Yang
,
K. H.
,
Khalil
,
T. B.
,
King
,
A. I.
, and
Tashman
,
S.
,
1999
, “
Brain/Skull Relative Displacement Magnitude Due to Blunt Head Impact: New Experimental Data and Model
,”
43rd Stapp Car Crash Conference
, SAE Technical Paper No. 99SC22.
38.
Fice
,
J. B.
,
Cronin
,
D. S.
, and
Panzer
,
M. B.
,
2011
, “
Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2152
2162
.10.1007/s10439-011-0315-4
39.
Yue
,
N.
,
Shin
,
J.
, and
Untaroiu
,
C. D.
,
2011
, “
Development and Validation of an Occupant Lower Limb Finite Element Model
,” SAE Technical Paper No. 2011-01-1128.
40.
Darvish
,
K. K.
, and
Crandall
,
J. R.
,
2001
, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
,
23
(
9
), pp.
633
645
.10.1016/S1350-4533(01)00101-1
41.
Elkin
,
B. S.
,
Ilankovan
,
A.
, and
Morrison
,
B.
, 3rd
,
2010
, “
Age-Dependent Regional Mechanical Properties of the Rat Hippocampus and Cortex
,”
ASME J. Biomech. Eng.
,
132
(
1
), p.
011010
.10.1115/1.4000164
42.
Elkin
,
B. S.
,
Ilankovan
,
A. I.
, and
Morrison
,
B.
,
2011
, “
A Detailed Viscoelastic Characterization of the P17 and Adult Rat Brain
,”
J. Neurotrauma
,
28
(
11
), pp.
2235
2244
.10.1089/neu.2010.1604
43.
Franceschini
,
G.
,
Bigoni
,
D.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2006
, “
Brain Tissue Deforms Similarly to Filled Elastomers and Follows Consolidation Theory
,”
J. Mech. Phys. Solids
,
54
(
12
), pp.
2592
2620
.10.1016/j.jmps.2006.05.004
44.
Hrapko
,
M.
,
van Dommelen
,
J. A.
,
Peters
,
G. W.
, and
Wismans
,
J. S.
,
2008
, “
Characterisation of the Mechanical Behaviour of Brain Tissue in Compression and Shear
,”
Biorheology
,
45
(
6
), pp.
663
676
.
45.
Miller
,
K.
, and
Chinzei
,
K.
,
2002
, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
,
35
(
4
), pp.
483
490
.10.1016/S0021-9290(01)00234-2
46.
Nicolle
,
S.
,
Lounis
,
M.
,
Willinger
,
R.
, and
Palierne
,
J. F.
,
2005
, “
Shear Linear Behavior of Brain Tissue Over a Large Frequency Range
,”
Biorheology
,
42
(
3
), pp.
209
223
.
47.
Prange
,
M. T.
, and
Margulies
,
S. S.
,
2002
, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
244
252
.10.1115/1.1449907
48.
Depreitere
,
B.
,
Van Lierde
,
C.
,
Sloten
,
J. V.
,
Van Audekercke
,
R.
,
Van der Perre
,
G.
,
Plets
,
C.
, and
Goffin
,
J.
,
2006
, “
Mechanics of Acute Subdural Hematomas Resulting From Bridging Vein Rupture
,”
J. Neurosurg.
,
104
(
6
), pp.
950
956
.10.3171/jns.2006.104.6.950
49.
Takhounts
,
E. G.
,
Eppinger
,
R. H.
,
Campbell
,
J. Q.
,
Tannous
,
R. E.
,
Power
,
E. D.
, and
Shook
,
L. S.
,
2003
, “
On the Development of the SIMon Finite Element Head Model
,”
Stapp Car Crash Journal
,
47
, pp.
107
133
.
50.
Ruan
,
J. S.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
1993
, “
Finite Element Modeling Direct Head Impact
,”
Stapp Car Crash Conference
, SAE Technical Paper No. 933114.
51.
Ruan
,
J. S.
,
Khalil
,
T.
, and
King
,
A. I.
,
1991
, “
Human Head Dynamic Response to Side Impact by Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
276
283
.10.1115/1.2894885
52.
Ruan
,
J.
, and
Prasad
,
P.
,
2001
, “
The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses
,”
Stapp Car Crash Journal
,
45
, pp.
395
414
.
53.
McElhaney
,
J. H.
,
Hopper
,
R. H.
Jr.
,
Nightingale
,
R. W.
, and
Myers
,
B. S.
,
1995
, “
Mechanisms of Basilar Skull Fracture
,”
J. Neurotrauma
,
12
(
4
), pp.
669
678
.10.1089/neu.1995.12.669
54.
Cloots
,
R. J.
,
Gervaise
,
H. M.
,
van Dommelen
,
J. A.
, and
Geers
,
M. G.
,
2008
, “
Biomechanics of Traumatic Brain Injury: Influences of the Morphologic Heterogeneities of the Cerebral Cortex
,”
Ann. Biomed. Eng.
,
36
(
7
), pp.
1203
1215
.10.1007/s10439-008-9510-3
55.
Ho
,
J.
, and
Kleiven
,
S.
,
2009
, “
Can Sulci Protect The Brain From Traumatic Injury?
J. Biomech.
,
42
(
13
), pp.
2074
2080
.10.1016/j.jbiomech.2009.06.051
56.
Zhang
,
L.
,
Bae
,
J.
,
Hardy
,
W. N.
,
Monson
,
K. L.
,
Manley
,
G. T.
,
Goldsmith
,
W.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2002
, “
Computational Study of the Contribution of the Vasculature on the Dynamic Response of the Brain
,”
Stapp Car Crash Journal
,
46
, pp.
145
164
.
57.
Ho
,
J.
, and
Kleiven
,
S.
,
2007
, “
Dynamic Response of the Brain With Vasculature: A Three-Dimensional Computational Study
,”
J. Biomech.
,
40
(
13
), pp.
3006
3012
.10.1016/j.jbiomech.2007.02.011
You do not currently have access to this content.